PE-2 & 暴模...
题意:
求不大于4000000的斐波那契数列中,所有偶数之和.
SOL:
还是只会暴模...看讨论区貌似有一个很牛逼的大神的发言?
英语水平太差...
mark以下
The Fibonacci sequence is a driven by the second order linear difference equation Fn+2 = Fn+1 + Fn, with boundary conditions F1 = 1, F2 = 1, and thus can be solved exactly. As we know from practice that Fn is roughly exponential, we try Fn = Aa^n for A and a constants. This gives the quadratic a^2 = a + 1, which happens to be the equation for the golden ratio Φ, and its inverse which I'll denote Φ' (i.e. Φ' = 1/Φ, Φ' = Φ - 1) As the equation is second order then it is a linear combination of these two solutions and the boundary conditions define the constants involved, i.e. Fn = AΦ^n + BΦ'^n F0 = 0 (easy if you follow backwards) so A + B = 0 F1 = 1 . Using Φ = (1 + r)/2 and Φ' = (1 - r)/2 where r is the positive square root of 5, you can find A - B = 2/r yielding A = 1/r, B = -1/r So Fn = (Φ^n /r) - (Φ'^n /r) = (Φ^n - Φ'^n)/r for all n. As can be seen, the even terms are when n is a multiple of 3, so using this formula add F3 + F6 + ... until you get a term greater than one million. Thus a program for this could be only a handful of lines long. A slightly further simplification would be to work out Φ^3 and Φ'^3, call them b and b' respectively. Then F3k = (b^k - b'^k)/r for k = 1,2,3...
PE-2 & 暴模...的更多相关文章
- PE-1 & 暴模|容斥
题意: 求1000以下3或5的倍数之和. SOL: 暴模也是兹瓷的啊... 那么就想到了初赛悲催的滚粗...容斥忘了加上多减的数了... 然后对着题...T = 3*333*(1+333)/2 + 5 ...
- PE的一些水 3-50
T3: 分解质因数. lalala T4: 暴模. 然而数学方法怎么搞?---->也就是怎么手算?... 于是看了一下讨论区...发现原来我的数学已经低于小学生水平了... 我们把答案abccb ...
- 【旧文章搬运】暴搜内存查找PE镜像
原文发表于百度空间,2008-7-28========================================================================== 前面介绍了修 ...
- hiho一下 第九十七周 数论六·模线性方程组
题目1 : 数论六·模线性方程组 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:今天我听到一个挺有意思的故事! 小Hi:什么故事啊? 小Ho:说秦末,刘邦的将军 ...
- PE结构详解
1 基本概念 下表描述了贯穿于本文中的一些概念: 名称 描述 地址 是“虚拟地址”而不是“物理地址”.为什么不是“物理地址”呢?因为数据在内存的位置经常在变,这样可以节省内存开支.避开错误的内存位置等 ...
- HDU - 6185 Covering(暴搜+递推+矩阵快速幂)
Covering Bob's school has a big playground, boys and girls always play games here after school. To p ...
- NOIP2018提高组省一冲奖班模测训练(一)
比赛链接 https://www.51nod.com/contest/problemList.html#!contestId=72&randomCode=147206 这次考试的题非常有质量 ...
- POJ 3188暴搜
题意: 思路: 裸的暴搜 --. 但是要注意如果你不用所有的按键就能输出最优解的话一定要把所有的字母都安排到一个位置-. 我的一群PE就是这么来的-- 为什么写的人这么少-- // by Sirius ...
- HDU 4704 Sum 超大数幂取模
很容易得出答案就是2^(n-1) 但是N暴大,所以不可以直接用幂取模,因为除法操作至少O(len)了,总时间会达到O(len*log(N)) 显然爆的一塌糊涂 套用FZU1759的模板+顺手写一个大数 ...
随机推荐
- JS 获取浏览器窗口大小
JS 获取浏览器窗口大小 <script> // 获取窗口宽度 if (windows.innerWidth) { winWidth = windows.innerWidth; } els ...
- jq 确定删除方法与文件删除
var choice=confirm("您确认要删除吗?", function() { }, null); if(choice) ...
- ActiveMQ的几种消息持久化机制
为了避免意外宕机以后丢失信息,需要做到重启后可以恢复消息队列,消息系统一般都会采用持久化机制. ActiveMQ的消息持久化机制有JDBC,AMQ,KahaDB和LevelDB,无论使用哪种持久化方式 ...
- 重温WCF之数据契约中使用枚举(转载)(十一)
转载地址:http://www.zhuli8.com/wcf/EnumMember.html 枚举类型的定义总是支持序列化的.当我们定义一个新的枚举时,不必应用DataContract特性,就可以在数 ...
- async/await 异步编程(转载)
转载地址:http://www.cnblogs.com/teroy/p/4015461.html 前言 最近在学习Web Api框架的时候接触到了async/await,这个特性是.NET 4.5引入 ...
- Getting Started with Blocks
本文来源为:developer.apple.com,仅仅是博主练习排版所用. Getting Started with Blocks The following sections help you t ...
- android 入门-防微信拍摄视频 按钮事件处理
package com.cc.view; import com.cc.R; import com.cc.R.layout; import com.cc.R.menu; import android.o ...
- phpcms v9实现wap单页教程
下面以添加“关于我们”这一单页为例作phpcms V9 wap手机门户添加单页的教程说明: 步骤一:复制phpcms\templates\default\wap下的maps.html,粘贴重命名为ab ...
- hdu 3236 二维背包
明天来一发 hdu 4501 算是这题的简化版吧
- 打造理想的Windows 10 APP开发环境的5个步骤
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:微软即将发布Windows 10手机版,实际上很多人现在已经开始在开发Windows ...