Time complexity:

Binary search O(log2 n):

i=0.   n elements:         -------------------

i=1.   n/2 elements:                   ----------

i=2.   n/4 elements:                          -----

...

i=i.    n/2^i elements:                        -

进行n/2^i=1, i=log2 n 次,来达到只剩一个element.

1,Selection Sort

Steps:

from 0~n-1, select the minimum element[comparing n-1 times], swap it with the A[0].

from 1~n-1, select the minimum element[comparing n-2 times], swap it with the A[1].

...

So total comparison times: n-1+n-2+...+2+1 = n(n-1)/2=O(n^2).

2, Insertion Sort

Steps:

i, compare with j=0~i-1=0, if bigger than A[j], nothing changes; if smaller than A[j], A[j+1] = A[j], move A[i] to position j.

So total comparison times:  1+2+...+n-1=n(n-1)/2=O(n^2).

3, Merge 2 sorted arrays

像两叠放着的纸牌,最上面放着最小的牌,指针从上开始往下,注意的是两叠的高度不同,一叠到底以后只需考虑另一叠。

4, Bubble Sort

也是两层loop, 比较相邻两个element,如果前面大于后面,就swap,这样每一轮把最大的那个扔到末端。

public static void sort(int[] a) {

  for(int i = 0; i< a.length; i++) {

    for(int j = 0; j<a.length -1 - i; j++) {
      if(a[j] > a[j+1]) {
        int temp = a[j];
        a[j]= a[j+1];
        a[j+1] = temp;
    }}}
}

5, Quick Sort

Divide and Conquer, Recuisive, Complexity: O(nlogn), worst-case: O(n^2)[if you pick the pivot which is the biggest/smallest value in the array].

private static void quickSort2(int[] array, int low, int high) {
  int i = low, j= high;
  int mid = (low + high) /2;
  while(i<=j) {
    while(array[i] < array[mid]) i++;
    while(array[j] > array[mid]) j--;
    if(i<= j) {
      int temp = array[i];
      array[i] = array[j];
      array[j] = temp;
      i++;  //Don't forget to increase/decrease index here
      j--;
    }
  }
  if(low < j) quickSort2(array, low, j);
  if(i < high) quickSort2(array, i, high);
}

6, Merge Sort

Worst-case and average are both: O(nlogn). 每层都比较n次,有logn层。

Use helplerArray to copy from, One method for divide and conquer, One method for merging lower part and higher part.

private void mergeSort(int low, int high) {
  if(low<high) {
    int middle = (low + high)/2;
    mergeSort(low, middle);
    mergeSort(middle +1, high);
    merge(low, middle, high);
  }
}
private void merge(int low, int middle, int high) {
  for(int i = low; i<= high; i++)
    helper[i] = this.numbers[i];
  int i = low;            //pointer i for low part of helper array
  int j = middle + 1;  //pointer j for higher part of helper array
  int k = low;           //pointer k for target array
  while(i<= middle && j<= high) {
    if(helper[i] < helper[j]) numbers[k++] = helper[i++];
    else numbers[k++] = helper[j++];
  }
  while(j<=high) numbers[k++] = helper[j++];
  while(i<=middle) numbers[k++] = helper[i++];
}

Steps: 1, private var int[] numbers, int[] helper; 2, private method mergeSort(int low, int high), 在这里做recursion,先mergeSort(low, mid)再mergeSort(mid+1, high); 3, private method merge(int low, int mid, int high),在这里先把low~high赋给helper array,然后开始比较.

7, Radix Sort O(n)

Radix Sort puts the elements in order by comparing the digits of the numbers. We should start sorting by comparing and ordering the one's digits:Now, we gather the sublists (in order from the 0 sublist to the 9 sublist) into the main list again:the sublists are created again, this time based on the ten's digit:Finally, the sublists are created according to the hundred's digit.

In the example above, the numbers were all of equal length, but many times, this is not the case. If the numbers are not of the same length, then a test is needed to check for additional digits that need sorting. This can be one of the slowest parts of Radix Sort, and it is one of the hardest to make efficient.

时间复杂度O(n*k),k是位数。k不一定小于logn。

Java program:

func(int[] arr, int maxDigits)

int exp = 1;

for(int i = 0; i<maxDigits; i++) {

  ArrayList[] bucketList = new ArrayList[10]; //use ArrayList<ArrayList<Integer>>.

  for(int k = 0; k<10; k++)  bucketList[k] = new ArrayList();

  for(int j = 0; j< arr.length; j++) { int index = arr[j]/exp%10; bucketList[index].add(arr[j]);

  exp = exp *10;

  int number = 0;

  for(int k = 0; k<10; k++) {//循环bucketList将所有element回放到原arr中}

}

8, Count Sort

原数组A={3, 5, 6, 3, 3, 5};

统计组B={0, 0, 0, 3, 0, 2, 1}; => {0, 0, 0, 0, 3, 3, 3, 5};  //数组B的长度是k, B[A[i]]++; for(i:k){oldCount = B[i]; B[i]=total; total+=oldCount;}

排序组C={3, 3, 3, 5, 5, 6}       //C[B[A[i]]=A[i]; B[A[i]]++;

Count Sort对于数组的元素值范围比较小,频率比较大的情况有效。时间和空间复杂度都是O(n+k)。和Radix sort一样,都不是比较排序。计数排序是用来排序0到100之间的数字的最好的算法。

9, Arrays.sort()

用的是Dual-pivot quick sort, average and worst time complexity are O(nlogn), worst我不确定,document里说的是对于多数情况下比quick sort要好。

Collections.sort(List<T> list); 的不同之处在于它是sort List, 据说内部是将list转成array用同样的排序算法,complexity is also O(nlogn).

Linked List

先构建一个Node:

class Node{

  int num;

  Node next;

  public Node(int n) { num = n; next = null;}

}

基本的构建一个singly linked list:

public static void main(String[] args) {
  Node top = null, node = null, last = null;
  System.out.printf("Enter some integers ending with 0\n");
  Scanner in = new Scanner(System.in);
  int input = in.nextInt();
  while(input != 0) {
    top = addInPlace(top, input);  
    input = in.nextInt();
  }
  print(top);
}

构建sorted linked list的方法:

public static Node addInPlace(Node top, int input) {
  Node prev = null;
  Node curr = top;
  Node node = new Node(input);
  while(curr != null && input > curr.num) {
    prev = curr;
    curr = curr.next;
  }
  node.next = curr;
  if(prev == null) return node;
  prev.next = node;
  return top;
}

Insert node into a circular sorted linked list的方法:

public static void insertIntoCircularList(Node top, int key) {
  Node curr = top;
  Node prev = null;
  Node node = new Node(key);
  do{
    prev = curr;
    curr = curr.next;
    if(key > prev.num && key <curr.num) break;
    if(key < prev.num && key <curr.num) break;
  }while(curr!= top);
  prev.next = node;
  node.next = curr;
}

反转singly linked list的方法:

private static Node reverseList(Node top) {
  Node p1 = null;
  Node p2 = top;
  Node p3 = null;
  while(p2 != null) {
    p3 = p2.next;
    p2.next = p1;
    p1 = p2;
    p2 = p3;
  }
  return p1;
}

asd

[Algorithm Basics] Sorting, LinkedList的更多相关文章

  1. [Algorithm Basics] Search

    1, Binary Search On sorted array! public static int binarySearch(int e, int[] array, int low, int hi ...

  2. Lazarus教程 中文版后续给出

    市面上有介绍Delphi的书籍(近来Delphi的书也是越来越少了),但没有一本系统的介绍Lazarus的书,这本书是网上的仅有的一本Lazarus教程,目前全部是英文,不过我已经着手开始翻译,争取尽 ...

  3. Data-Structure-Notes

    Data Structure Notes Chapter-1 Sorting Algorithm Selection Sorting: /* * Selection Sort */ template& ...

  4. Introduction to Machine Learning

    Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an al ...

  5. 谷歌技术面试要点(Google面试)(14年5月20日交大专场)

    技术面试的主题 1.简要自我介绍: 姓名.学校.专业 做过的项目与实习 个人主要成就 2.技术评估: 构建与开发算法 编程 计算机基础知识 数据结构 现实世界问题解决能力 设计问题(主要针对博士生) ...

  6. 谷歌的java文本差异对比工具

    package com.huawei.common.transfertool.utils; /** * @author Paul * @version 0.1 * @date 2018/12/11 * ...

  7. 快速排序—三路快排 vs 双基准

    快速排序被公认为是本世纪最重要的算法之一,这已经不是什么新闻了.对很多语言来说是实际系统排序,包括在Java中的Arrays.sort. 那么快速排序有什么新进展呢? 好吧,就像我刚才提到的那样(Ja ...

  8. R语言 arules包 apriori()函数中文帮助文档(中英文对照)

    apriori(arules) apriori()所属R语言包:arules                                         Mining Associations w ...

  9. 结对编程作业(java)

    结对对象:许峰铭 一.Github项目地址:https://github.com/Leungdc/Leungdc/tree/master/%E5%9B%9B%E5%88%99%E8%BF%90%E7% ...

随机推荐

  1. js产生随机数并加入数组

    <!doctype html> <html lang="zh-CN"> <head> <meta charset="utf-8& ...

  2. ggplot2.multiplot:将多个图形使用GGPLOT2在同一页上

    一页多图 介绍 ggplot2.multiplot是一个易于使用的功能,将多个图形在同一页面上使用R统计软件和GGPLOT2绘图方法.这个功能是从easyGgplot2包. 安装并加载easyGgpl ...

  3. 20161106PM-Fiddler

    1. 设置Fidder使之支持HTTPS协议 Tools->Fiddler Options->HTTPS->勾上Decrypt HTTPS traffic->OK 2. 断点 ...

  4. CSS3的chapter4

    段落样式: 行高——line-height p { line-height:25px | 150% | normal;} 段落缩进——text-indent p { text-indent:2em;} ...

  5. 连接mysql提示com.mchange.v2.resourcepool.BasicResourcePool

    1.com.mchange.v2.resourcepool.BasicResourcePool$ScatteredAcquireTask@6ff9129c com.mchange.v2.resourc ...

  6. 《BI项目笔记》创建多维数据集Cube(1)

    有两个事实表,因此就有两个度量值组,并且向导将为非维度键的事实表中的每一个数值列创建一个度量值.由于我们这里不需要那么多,所以只选择部分度量值.另外要注意,度量值的名称源于事实表中的列,所有名称由可能 ...

  7. CSSOM之getComputedStyle,currentStyle,getPropertyValue,getAttribute

    js关于CSSOM编程的样式相关几个常用的方法 webkit:getComputedStyle,getPropertyValue IE:currentStyle,getAttribute 前言 jqu ...

  8. Linux nginx日志按天分割实例

    Linux nginx日志按天分割实例   nginx的日志有个小缺点,日志文件一直就是一个,不会自动地进行切割,如果访问量很大的话,将导致日志文件非常大,不便于管理这就需要我们自己来实现了,按日期每 ...

  9. CSS实现垂直居中

    Hack技术就可以啊!所以在这里我还要啰嗦两句,CSS中的确是有vertical-align属性,但是它只对(X)HTML元素中拥有valign特性的元素才生效,例如表格元素中的<td>. ...

  10. hasOwnProperty,in

    hasOwnProperty,in区别: hasOwnProperty:指出一个对象是否具有指定名称的属性 in:对象是否能够访问此属性(包括直接在对象上访问和通过原型访问) 看下示例代码: (fun ...