Java实现堆排序和计数排序
堆排序代码:
思想:每次都取堆顶的元素,将其放在序列最后面,然后将剩余的元素重新调整为最小堆,依次类推,最终得到排序的序列。
import java.util.Arrays; /**
* 思路:首先要知道大顶堆和小顶堆,数组就是一个堆,每个i节点的左右孩子是2i+1和2i+2
* 有了堆,将其堆化:从(n/2)-1个元素开始向下修复,将每个节点修复为小(大)顶堆
* 修复完成后,数组具有小(大)顶堆的性质
* 按序输出:小顶堆可以对数组逆序排序,每次交换堆顶和末尾元素,对堆顶进行向下修复,这样次小元素又到堆顶了
*
* 时间复杂度:堆化:一半的元素修复,修复是单分支的,所以整体堆化为nlgn/2
* 排序:n个元素都要取出,因此调整n次,每次调整修复同上是lgn的,整体为nlgn
* 空间复杂度:不需要开辟辅助空间
* 原址排序
* 稳定性
*
*/
public class HeapSort { static void sort(int []A){
// 堆排序第一步: 先对A进行堆化
makeMinHeap(A);
for(int x = A.length-1;x>=0;x--){
// 堆排序第二步: 把堆顶,0号元素和最后一个元素对调
swap(A, 0, x);
// 堆排序第三步:缩小堆的范围,对堆顶元素进行向下调整
MinHeapFixDown(A, 0, x);
}
} static void makeMinHeap(int[] A){
int n = A.length;
for(int i = n/2-1;i>=0;i--){
MinHeapFixDown(A,i,n);
}
} private static void MinHeapFixDown(int[] A, int i, int n) {
// 找到左右孩子
int left = 2 * i + 1;
int right = 2 * i + 2 ;
// 左孩子已经越界,i就是叶子节点
if (left>=n) {
return ;
}
// min 指向了左右孩子中较小的那个
int min = left;
if (right>=n) {
min = left;
}else {
if (A[right]<A[left]) {
min = right;
}
}
// 如果A[i]比两个孩子都要小,不用调整
if (A[i]<=A[min]) {
return ;
}
// 否则,找到两个孩子中较小的,和i交换
int temp = A[i];
A[i] = A[min];
A[min] = temp;
// 小孩子那个位置的值发生了变化,i变更为小孩子那个位置,递归调整
MinHeapFixDown(A, min, n);
} private static void swap(int[] A, int p, int bigger) {
int temp = A[p];
A[p] = A[bigger];
A[bigger] = temp; } public static void main(String[] args) {
int arr[] = new int[10];
for(int i=0;i<10;i++){
arr[i] = (int) ((Math.random()+1)*10);
} System.out.println("排序前:"+Arrays.toString(arr));
sort(arr);
System.out.println("排序后:"+Arrays.toString(arr));
} }
堆排序结果:

计数排序代码:
import java.util.Arrays; /**
* 计数排序
* 思路:开辟新的空间,空间大小为max(source)+1
* 扫描source,将value作为辅助空间的下标,用辅助空间的该位置元素记录value的个数
* 如 9 7 5 3 1,helper的空间就为10
* 依次扫描,value为9,将helper[9]++,以此类推,完成之后,再去遍历helper
* 如果该位(index)的值为0,说明index不曾在source中出现
* 如果该位(index)的值为 1,说明出现了1次,为2说明出现了两次
* 时间复杂度:扫描一次source,扫描一次helper,复杂度为N+K
* 空间复杂度:如果source里面有个元素较大的,那么开辟的辅助空间较大
* 非原址排序
* 稳定性:相同元素不会出现交叉,非原址都是拷来拷去
* 如果要优化一下空间,可以求出minOf(source),那么helper的长度为(max-min)+1,这样就能短点
* 计数有缺陷,数据较为密集或范围较小时,适用。
*/
public class CountSort { static void sort(int []source){
int max = source[0];
for (int i = 1; i < source.length; i++) {
if (source[i]>max) {
max = source[i];
}
}
int []helper = new int[max+1];
for(int e:source){
helper[e]++;
}
int current = 0; // 数据回填的位置
for (int i = 1; i < helper.length; i++) {
while(helper[i]>0){
source[current++] = i;
helper[i]--;
}
}
} // 保证排序稳定性的版本
public static void sort2(int[] source) {
int max = source[0];
for (int i = 1; i < source.length; i++) {
if (source[i]>max) {
max = source[i];
}
}
int []helper = new int[max+1];
for (int e : source) {
helper[e]++;
}
for (int i = 1; i < helper.length; i++) {
helper[i] += helper[i - 1];
}
int len = source.length;
int[] target = new int[len];
for (int i = len - 1; i >= 0; i--) {
target[helper[source[i]] - 1] = source[i];
helper[source[i]]--;
}
System.arraycopy(target, 0, source, 0, len);
} public static void main(String[] args) {
int arr[] = new int[10];
for(int i=0;i<10;i++){
arr[i] = (int) ((Math.random()+1)*10);
}
System.out.println("排序前:"+Arrays.toString(arr));
sort2(arr);
System.out.println("排序后:"+Arrays.toString(arr));
} }
计数排序结果:

Java实现堆排序和计数排序的更多相关文章
- 排序算法<No.1> 【计数排序】
继上篇博文,今天我将先介绍一下什么是计数排序,将计数排序描述清楚后,再进行后续的桶排序方法解决这个问题. 通常情况下,一提到排序,大家第一反应就是比较,其实,今天我要说的这个计数排序,不是基于比较的排 ...
- 排序基础之非比较的计数排序、桶排序、基数排序(Java实现)
转载请注明原文地址: http://www.cnblogs.com/ygj0930/p/6639353.html 比较和非比较排序 快速排序.归并排序.堆排序.冒泡排序等比较排序,每个数都必须和其他 ...
- 计数排序和桶排序(Java实现)
目录 比较和非比较的区别 计数排序 计数排序适用数据范围 过程分析 桶排序 网络流传桶排序算法勘误 桶排序适用数据范围 过程分析 比较和非比较的区别 常见的快速排序.归并排序.堆排序.冒泡排序等属于比 ...
- 计数排序详解以及java实现
前言 我们知道,通过比较两个数大小来进行排序的算法(比如插入排序,合并排序,以及上文提到的快速排序等)的时间复杂度至少是Θ(nlgn),这是因为比较排序对应的决策树的高度至少是Θ(nlgn),所以排序 ...
- 八大排序方法汇总(选择排序,插入排序-简单插入排序、shell排序,交换排序-冒泡排序、快速排序、堆排序,归并排序,计数排序)
2013-08-22 14:55:33 八大排序方法汇总(选择排序-简单选择排序.堆排序,插入排序-简单插入排序.shell排序,交换排序-冒泡排序.快速排序,归并排序,计数排序). 插入排序还可以和 ...
- 算法-java代码实现计数排序
计数排序 第10节 计数排序练习题 对于一个int数组,请编写一个计数排序算法,对数组元素排序. 给定一个int数组A及数组的大小n,请返回排序后的数组. 测试样例: [1,2,3,5,2,3], ...
- 桶排序和计数排序的理解实现和比较(Java)
比较和非比较的区别 常见的快速排序.归并排序.堆排序.冒泡排序等属于比较排序.在排序的最终结果里,元素之间的次序依赖于它们之间的比较.每个数都必须和其他数进行比较,才能确定自己的位置.比较排序的优势是 ...
- 排序算法-计数排序(Java)
package com.rao.sort; import java.util.Arrays; /** * @author Srao * @className CountSort * @date 201 ...
- Java排序之计数排序
Java排序之计数排序 计数排序思路 计数排序适用于有明确范围的数组,比如给定一个数组,且知道所有值得范围是[m,n].这个时候可以使用一个n-m+1长度的数组,待排序的数组就可以散在这个数组上,数组 ...
随机推荐
- spring-cloud-eureka服务注册与发现
Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的.SpringCloud将它集成在其子项 ...
- OpenStack—nova组件计算服务
nova介绍: Nova 是 OpenStack 最核心的服务,负责维护和管理云环境的计算资源.OpenStack 作为 IaaS 的云操作系统,虚拟机生命周期管理也就是通过 Nova 来实现的. 用 ...
- java----tomcat
下载: 测试使用一般下载zip格式,在服务器上布置tomcat使用直接安装格式(install) https://tomcat.apache.org/download-90.cgi 使用 在windo ...
- 抓取某网站信息时遇到的问题及解决 The character set provided in ContentType is invalid. Cannot read content as string using an invalid character set
var response = httpClient.SendAsync(requestMessage).Result; content = response.Content.ReadAsStringA ...
- C#中的 隐式与显式接口实现
在C#中,正常情况下使用接口的实现使用的是 隐式接口实现. public interface IParent1 { void Medthod(); } public class Child : IPa ...
- C# 返回JSON格式化统一标准
public class BackJson { public int code { get; set; } public string msg { get; set; } public string ...
- Canvas 获得键盘焦点的方法
Canvas 无法直接获得键盘焦点,但可以通过设置 tabindex 属性的方式获得焦点,实现代码如下: canvas.setAttribute('tabindex', '0'); // needed ...
- Shell编程-控制结构 | 基础篇
if-then-else分支结构 if-then-else是一种基于条件测试结果的流程控制结构.如果测试结果为真,则执行控制结构中相应的命令列表:否则将进行另外一个条件测试或者退出该控制结构. if- ...
- Tomcat映射路径
打开tomcat安装包,在config目录下修改server.xml文件: 在<Host>标签中添加: <Context path="" docBase=&quo ...
- SpringBoot简单入门
一.创建SpringBoot项目 1.创建maven项目,pom引入springboot父级启动器(starter)依赖: <?xml version="1.0" encod ...