区间RMQ问题
简介
RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题。
RMQ(Range Minimum/Maximum Query),即区间最值查询,这是一种在线算法,所谓在线算法,是指用户每次输入一个查询,便马上处理一个查询。RMQ算法一般用较长时间做预处理,时间复杂度为O(nlogn),然后可以在O(1)的时间内处理每次查询。
示例:
问题:给出n个数ai,让你快速查询某个区间的的最值。
算法分类:DP+位运算
算法分析:这个算法就是基于DP和位运算符,我们用dp【i】【j】表示从第 i 位开始,到第 i + 2^j -1 位的最大值或者最小值。
那么我求dp【i】【j】的时候可以把它分成两部分,第一部分从 i 到 i + 2 ^( j-1 ) - 1 ,第二部分从 i + 2 ^( j-1 ) 到 i + 2^j - 1 次方,其实我们知道二进制数后一个是前一个的二倍,那么可以把 i --- i + 2^j 这个区间 通过2^(j-1) 分成相等的两部分, 那么转移方程很容易就写出来了。
转移方程: mm [ i ] [ j ] = max ( mm [ i ] [ j - 1 ] , mm [ i + ( 1 << ( j - 1 ) ) ] [ j - 1 ] );
代码:
void rmq_isit(bool ok)
{
for(int i=;i<=n;i++)
mm[i][]=mi[i][]=a[i];
for(int j=;(<<j)<=n;j++)
{
for(int i=;i+(<<j)-<=n;i++)
{
if(ok)
mm[i][j]=max(mm[i][j-],mm[i+(<<(j-))][j-]);
else
mi[i][j]=min(mi[i][j-],mi[i+(<<(j-))][j-]);
}
}
}
那么查询的时候对于任意一个区间 l -- r ,我们同样可以得到区间差值 len = (r - l + 1)。
那么我们这一用小于2^k<=len,的 k 把区间分成可以交叉的两部分l 到 l+2^(k)- 1, 到 r -(1<<k)+1 到 r 的两部分,很easy的求解了。
查询代码:
int rmq(int l,int r)
{
int k=;
while((<<(k+))<=r-l+)
k++;
//printf("%d %d %d %d\n",l,l+(1<<k),r-(1<<k)+1,r-(1<<k)+1+(1<<k));
int ans1=max(mm[l][k],mm[r-(<<k)+][k]);
int ans2=min(mi[l][k],mi[r-(<<k)+][k]);
return ans1-ans2;
}
主要方法及复杂度如下:
ST算法
标准算法
建立笛卡尔树
转化为约束RMQ
约束RMQ的解法
文章内容摘抄于:
rmq_百度百科
RMQ算法分析
区间RMQ问题的更多相关文章
- F题:等差区间(RMQ||线段树)
原题大意:原题链接 题解链接 给定一个长为n的数组元素和q次区间[l,r]询问,判断区间[l,r]内元素排序后能否构成等差数列 #include<cmath> #include<c ...
- RMQ(Range MinimumQuery)问题之ST算法
ST算法------是用来求解给定区间RMQ的最值,本文以最小值为例 ST算法分为两部分 离线预处理(nlogn):运用DP思想,用于求解区间最值,并保存到一个二维数组中. 在线查询 (O(1)):对 ...
- 图灵杯 E 简单的RMQ(UVA 11235)(RMQ)
E: 简单的RMQ 时间限制: 2 Sec 内存限制: 64 MB提交: 934 解决: 165[提交][状态][讨论版] 题目描述 给定一个数组,其中的元素满足非递减顺序.任意给定一个区间[i, ...
- 树状数组求最大值 (RMQ with Shifts)
代码: #include <iostream> #include <stdio.h> #include <string.h> #include <stdlib ...
- 「CF52C」Circular RMQ
更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description You are given circular array \(a_0, a_ ...
- ST算法
作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例 举例: 给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最值为1. 方法:ST算法分成两部分:离线预处 ...
- ST表入门学习poj3264 hdu5443 hdu5289 codeforces round #361 div2D
ST算法介绍:[转自http://blog.csdn.net/insistgogo/article/details/9929103] 作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例 方 ...
- 【QAQ的Minecraft】
树套树被QAQ用木斧挖了,只剩二维RMQ了. 题目: QAQ最近爱上了一款很平凡的游戏,叫做<Minecraft>.目前游戏更新到了1.12版本,他发现了一条新的指令:/fill ...
- [BZOJ]4199 品酒大会(Noi2015)
讲道理是后缀数组裸题吧,虽然知道后缀数组的原理但是小C不会写是什么鬼.. 小C趁着做这题的当儿,学习了一下后缀数组. 网络上的后缀数组模板完全看不懂怎么破,全程照着黄学长的代码抄,感觉黄学长写得还是很 ...
随机推荐
- Lambda表达式资料整理
重温委托,匿名方法,Lambda,泛型委托,表达式树 第一:委托 有些教材,博客说到委托都会提到事件,虽然事件是委托的一个实例,但是为了理解起来更简单,今天只谈委托不谈事件.先上一段代码: 下边的 ...
- [PHP] 按位与& 或| 异或^ 的日常使用
按位与:0&0=0; 0&1=0; 1&0=0; 1&1=1;按位或:0|0=0: 0|1=1: 1|0=1: 1|1=1;按位异或,在或的基础上1 1也为0:0^0= ...
- Softmax函数模型介绍
Softmax在机器学习中有非常广泛的应用,但是刚刚接触机器学习的人可能对Softmax的特点以及好处并不理解,其实你了解了以后就会发现,Softmax计算简单,效果显著,非常好用. 我们先来直观看一 ...
- js 向上和向下取整
Math.ceil(x),Math.floor(x) ◎Math.ceil()执行向上舍入,即它总是将数值向上舍入为最接近的整数:◎Math.floor()执行向下舍入,即它总是将数值向下舍入为最接近 ...
- BIM特点及格式文件说明
BIM行业是建筑与IT结合而形成的一个新兴行业,既然能说是行业,说明它包含的内容非常丰富,懂一点和完全懂是两码事,就好像一滴水和一片大海的范围一样.现在国内有很多高校开设了BIM专业,并对口招收了学生 ...
- iOS---------- Safe Area Layout Guide before iOS 9.0
如果你们的项目不做iOS9以下支持就打开main.storyboard 去除Use safe Area Layout 如果不考虑iOS9以下支持就按照下面的步骤 选中控制器,右边面板的Build ...
- 第三篇 Html-label标签
label标签 用户获取文字,使得关联的标签获取光标 <!DOCTYPE html> <html lang="en"> <head> <m ...
- macOS 安装 Java (Homebrew)
macOS 安装多个 Java 版本 Homebrew 是 macOS 下的一个非常好用的包管理工具, caskroom 则是基于 Homebrew 构建的一个强大的应用程序管理器. Homebrew ...
- navicat 将自增长字段重置(重新从1开始)的方法
先说明,此语句会将你的表中数据全部删除. 很简单,运行如下sql语句: TRUNCATE TABLE 表名;
- Gitlab利用Webhook实现Push代码后的jenkins自动构建
之前部署了Gitlab的代码托管平台和Jenkins的代码发布平台.通常是开发后的代码先推到Gitlab上管理,然后在Jenkins里通过脚本构建代码发布.这种方式每次在发版的时候,需要人工去执行je ...