题目大意:

给你一个长为n的序列a,m次询问,每次查询一个区间的众数的出现次数,强制在线。

解题思路:

出题人题解

众所周知lxl是个毒瘤,Ynoi道道都是神仙题

首先得离散化。

分块后,预处理Fi,j表示第i∼j块的众数的出现次数。此处要用一个桶,空间复杂度O(n),时间复杂度O(n√n)。

用vector按顺序存每个数值所有元素的出现位置。

再记录每个元素在相应vector里的下标p。

以上空间复杂度都是O(n)的。

考虑询问,中间的直接使用预处理出的Fi,j的值即可。设当前的答案ans=Fi,j。

考虑边界的元素。

显然,由于边界的数最多2√n个,所以最多使得答案增加2√n。

我们只需要检查这些边角的元素,每次判断这些数的出现次数能否达到ans+1。

对于左边的边角元素x,我们在相应的vector里找到下标为px+ans的元素yy,若y⩽ry⩽r,则说明该数值在范围内有至少ans+1ans+1个数,暴力++ans即可。

对于右边的边角元素x,我们在相应的vector里找到下标为px−ans的元素yy,若y⩾ly⩾l,则说明该数值在范围内有至少ans+1ans+1个数,暴力++ans即可。

每次询问对O(√n)个元素检查,++ans的次数为O(√n)次。所以查询的时间复杂度为O(m√n)。

总时间复杂度O((n+m)√n),空间复杂度O(n),lxl说达到了下界。

C++ Code:

#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
#include<algorithm>
#define siz 708
#define N 500001
class istream{
char buf[],*s;
public:
inline istream(){
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
#endif
fread(s=buf,,,stdin);
fclose(stdin);
}
inline istream&operator>>(int&rhs){
int f=rhs=;
for(;!isdigit(*s);++s)f=*s=='-';
for(;isdigit(*s);)
rhs=(rhs<<)+(rhs<<)+(*s++^'');
if(f)rhs=-rhs;
return*this;
}
}cin;
class ostream{
char buf[],*s;
public:
inline ostream(){s=buf;}
inline ostream&operator<<(int rhs){
if(rhs<)*s++='-',rhs=-rhs;
if(rhs==){
*s++='';
return*this;
}
static int w;
for(w=;w<=rhs;w*=);
for(w/=;w;w/=)*s++=(rhs/w)^'',rhs%=w;
return*this;
}
inline ostream&operator<<(const char&rhs){*s++=rhs;return*this;}
inline~ostream(){
fwrite(buf,,s-buf,stdout);
}
}cout;
int n,m,L[],R[],bel[N],blocks,mx[][],ans,tot[N],wz[N],a[N];
void init(){
blocks=(n-)/siz+;
for(int i=;i<=blocks;++i)L[i]=R[i-]+,R[i]=i*siz;
R[blocks]=n;
for(int i=;i<=blocks;++i){
memset(tot,,sizeof tot);
for(int j=L[i];j<=R[i];++j)bel[j]=i;
for(int j=i;j<=blocks;++j){
int&F=mx[i][j];
F=mx[i][j-];
for(int k=L[j];k<=R[j];++k)
F=std::max(F,++tot[a[k]]);
}
}
}
std::vector<int>ls,v[N];
int main(){
ls.push_back(-);
cin>>n>>m;
for(int i=;i<=n;ls.push_back(a[i++]))cin>>a[i];
std::sort(ls.begin(),ls.end());
ls.erase(std::unique(ls.begin(),ls.end()),ls.end());
for(int i=;i<=n;++i)v[a[i]=std::lower_bound(ls.begin(),ls.end(),a[i])-ls.begin()].push_back(i),wz[i]=v[a[i]].size()-;
init();
memset(tot,,sizeof tot);
while(m--){
int l,r;cin>>l>>r;
l^=ans,r^=ans;
ans=;
if(bel[l]==bel[r]){
for(int i=l;i<=r;++i)ans=std::max(ans,++tot[a[i]]);
for(int i=l;i<=r;++i)tot[a[i]]=;
}else{
ans=mx[bel[l]+][bel[r]-];
for(int i=l;i<=R[bel[l]];++i){
int it=wz[i];
while(it+ans<v[a[i]].size()&&v[a[i]][it+ans]<=r)++ans;
}
for(int i=L[bel[r]];i<=r;++i){
int it=wz[i];
while(it-ans>=&&v[a[i]][it-ans]>=l)++ans;
}
}
cout<<ans<<'\n';
}
return ;
}

[Ynoi2019模拟赛]Yuno loves sqrt technology III的更多相关文章

  1. [Luogu5048] [Ynoi2019模拟赛]Yuno loves sqrt technology III[分块]

    题意 长为 \(n\) 的序列,询问区间众数,强制在线. \(n\leq 5\times 10^5\). 分析 考虑分块,暴力统计出整块到整块之间的众数次数. 然后答案还可能出现在两边的两个独立的块中 ...

  2. [luogu5048] [Ynoi2019模拟赛] Yuno loves sqrt technology III

    题目链接 洛谷. Solution 思路同[BZOJ2724] [Violet 6]蒲公英,只不过由于lxl过于毒瘤,我们有一些更巧妙的操作. 首先还是预处理\(f[l][r]\)表示\(l\sim ...

  3. [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...

  4. 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)

    传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...

  5. Luogu P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III 分块

    这才是真正的$N\sqrt{N}$吧$qwq$ 记录每个数$vl$出现的位置$s[vl]$,和每个数$a[i]=vl$是第几个$vl$,记为$P[i]$,然后预处理出块$[i,j]$区间的答案$f[i ...

  6. P5048 [[Ynoi2019模拟赛]Yuno loves sqrt technology III]

    为什么我感觉这题难度虚高啊-- 区间众数的出现次数- 计算器算一下 \(\sqrt 500000 = 708\) 然后我们发现这题的突破口? 考虑分块出来[L,R]块的众数出现个数 用 \(\text ...

  7. 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)

    题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...

  8. [Ynoi2019模拟赛]Yuno loves sqrt technology II(二次离线莫队)

    二次离线莫队. 终于懂了 \(lxl\) 大爷发明的二次离线莫队,\(\%\%\%lxl\) 二次离线莫队,顾名思义就是将莫队离线两次.那怎么离线两次呢? 每当我们将 \([l,r]\) 移动右端点到 ...

  9. [Ynoi2019模拟赛]Yuno loves sqrt technology II

    题目大意: 给定一个长为\(n\)的序列,\(m\)次询问,每次查询一个区间的逆序对数. 32MB. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 二次离线莫队. 对于每个区 ...

随机推荐

  1. python 统计单词个数,并按个数与字母排序

    # coding: utf-8 # In[1]: import collections str = "Be slow to promise and quick to perform" ...

  2. [Leetcode 40]组合数和II Combination Sum II

    [题目] Given a collection of candidate numbers (candidates) and a target number (target), find all uni ...

  3. C++之 自定义数据类型 枚举、结构体、共用体

    1.枚举 枚举类型的声明形式为:   enum  枚举类型名   {  变量值列表 };    变量值列表里都是整型变量,另外不要忘记最后面的分号! 比如,enum  weekday   { sun, ...

  4. SQL求几何重心

    ST_Centroid(geometry); geometry :a specified ST_Geometry e.g.: select ST_AsText(ST_Centroid('0103000 ...

  5. case when 和 decode 的比较分析

    一.case when 与 if - else 类似,语句如下:CASE expr WHEN expr1 THEN return_expr1         [WHEN expr2 THEN retu ...

  6. 简单理解 SVM

    SVM,中文名叫支持向量机. 在深度学习出现以前,它是数据挖掘的宠儿: SVM具有十分完整的数据理论证明,但同时理论也相当复杂. 初识SVM  同其他分类算法一样,SVM分类也是寻找合适的决策边界,为 ...

  7. 自学python之路(day1)

    1. 下载和安装Pycharm文本编辑器,解释器Python3 2. 了解python2和python3的不同 如输出中文时,python2需要在代码前加 # -*- encoding:utf-8 - ...

  8. 原型图 ER 8.0的注册码

    axuer8.0注册码Licensee:米 业成 (STUDENT)Key:nFmqBBvEqdvbiUjy8NZiyWiRSg3yO+PtZ8c9wdwxWse4WprphvSu9sohAdpNnJ ...

  9. crtontab定时执行任务

    1.crontab介绍:crontab命令用于设置周期性被执行的指令.该命令从标准输入设备读取指令,并将其存放于“crontab”文件中,以供之后读取和执行. 2.查看当前用户的定时任务:cronta ...

  10. .net下的缓存技术

    1.为什么要缓存?缓存能解决的问题 1.1稳定性 同一个应用中,对同一数据.逻辑功能和用户界面的多次请求时经常发生的.当用户基数很大时,如果每次请求都进行处理,消耗的资源是很大的浪费,也同时造成系统的 ...