安装sklearn需要的库请全部在万能仓库下载:

http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
http://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn

安装方法请看:

python安装whl文件

安装成功后测试集代码:

#!/usr/bin/python3.4
# -*- coding: utf-8 -*- import numpy as np
import matplotlib.pyplot as plt # 随机生成一个实数,范围在(0.5,1.5)之间,2行10列
cluster1 = np.random.uniform(0.5, 1.5, (2, 10))
cluster2 = np.random.uniform(3.5, 4.5, (2, 10))
cluster3 = np.random.uniform(2, 3, (2, 10))
# hstack拼接操作
X = np.hstack((cluster1, cluster2,cluster3)).T
print(X)
# 生成第一张图
plt.figure(1)
# 横轴为0-5,纵轴为0-5
plt.axis([0, 5, 0, 5]) # 是否有网格
plt.grid(True)
# x轴文字
plt.xlabel('x轴文字')
# y轴文字
plt.ylabel('y轴文字')
# K为黑色,k.为黑色的点
# [:,0]代表全部行第0列
plt.plot(X[:, 0], X[:, 1], 'k.')
# 给个标题
plt.title("1111")
# plt.show() from sklearn.cluster import KMeans
# 用scipy求解距离
from scipy.spatial.distance import cdist K = range(1, 10)
meandistortions = []
for k in K:
kmeans = KMeans(n_clusters=k)
kmeans.fit(X)
meandistortions.append(sum(np.min(
cdist(X, kmeans.cluster_centers_,
'euclidean'), axis=1)) / X.shape[0]) # 生成第二张图
plt.figure(2)
# 横轴为1-9,纵轴为0-2.5
plt.axis([1, 9, 0, 2.5]) plt.plot(K, meandistortions, 'bx-')
plt.xlabel('k')
plt.show()
plt.close()

效果如下:

画图的库 matplotlib 使用方法请参考:

http://www.cnblogs.com/zhizhan/p/5615947.html

python3安装sklearn机器学习库的更多相关文章

  1. 使用sklearn机器学习库实现线性回归

    import numpy as np  # 导入科学技术框架import matplotlib.pyplot as plt  # 导入画图工具from sklearn.linear_model imp ...

  2. Python线性回归算法【解析解,sklearn机器学习库】

    一.概述 参考博客:https://www.cnblogs.com/yszd/p/8529704.html 二.代码实现[解析解] import numpy as np import matplotl ...

  3. 机器学习(公式推导与代码实现)--sklearn机器学习库

    一.scikit-learn概述 1.sklearn模型   sklearn全称是scikit-learn,它是一个基于Python的机器学习类库,主要建立在NumPy.Pandas.SciPy和Ma ...

  4. python3安装pandas执行pip3 install pandas命令后卡住不动的问题及安装scipy、sklearn库的numpy.distutils.system_info.NotFoundError: no lapack/blas resources found问题

    一直尝试在python3中安装pandas等一系列软件,但每次执行pip3 install pandas后就卡住不动了,一直停在那,开始以为是pip命令的版本不对,还执行过 python -m pip ...

  5. Python机器学习库sklearn的安装

    Python机器学习库sklearn的安装 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口 ...

  6. win10下python3安装深度学习一般要用的库

    matplotlib :绘图库 seaborn:基于matplotlib的图形可视化包 numpy:函数.矩阵运算库 pandas :基于numpy的结构化数据分析库 首先看一下cmd能不能使用pip ...

  7. 机器学习库shark安装

    经过两天的折腾,一个对c++和机器学习库的安装都一知半解的人终于在反复安装中,成功的将shark库安装好了,小小纪念一下,多亏了卡门的热心帮忙. shark的安装主要分为以下几个部分: (1)下载 s ...

  8. Linux中安装python3.6和第三方库

    Linux中安装python3.6和第三方库 如果本机安装了python2,尽量不要管他,使用python3运行python脚本就好,因为可能有程序依赖目前的python2环境,比如yum!!!!! ...

  9. sklearn:Python语言开发的通用机器学习库

    引言:深入理解机器学习并全然看懂sklearn文档,须要较深厚的理论基础.可是.要将sklearn应用于实际的项目中,仅仅须要对机器学习理论有一个主要的掌握,就能够直接调用其API来完毕各种机器学习问 ...

随机推荐

  1. 网络远程唤醒 WOL Magic Packet

    Magic Packet Magic Packet白皮书介绍: The basic technical details of Magic Packet Technologyare simple and ...

  2. 关于Hbase的预分区,解决热点问题

    Hbase默认建表是只有一个分区的,开始的时候所有的数据都会查询这个分区,当这个分区达到一定大小的时候,就会进行做split操作: 因此为了确保regionserver的稳定和高效,应该尽量避免reg ...

  3. js,JQ 图片转换base64 base64转换为file对象,blob对象

    //将图片转换为Base64 function getImgToBase64(url,callback){ var canvas = document.createElement('canvas'), ...

  4. Linux NFS服务器的安装与配置方法(图文详解)

    这篇文章主要介绍了Linux NFS服务器的安装与配置方法(图文详解),需要的朋友可以参考下(http://xb.xcjl0834.com) 一.NFS服务简介 NFS 是Network File S ...

  5. mysql存储过程游标使用

    BEGIN DECLARE idCount int DEFAULT 0;-- 定义查询的id count DECLARE nameCount int DEFAULT 0;-- 统计相同名字合计 DEC ...

  6. 自我介绍&软工实践博客点评

    想想既然写了点评博客,那就顺便向同学们介绍下自己吧. 我是16届计科实验班的,水了两件小黄衫,于是就来当助教了_(:_」∠)_ 实话说身为同届生来当助教,我心里还是有点虚的,而且我还是计科的..感觉软 ...

  7. Centos给文件设置了777权限仍不能访问解决方案

    Centos给文件设置了777权限仍不能访问: 开启了SELinux导致 1.查看SELinux状态:/usr/sbin/sestatus -v ##如果SELinux status参数为enable ...

  8. JAVA基础复习与总结<六> 数组_容器_泛型

    数组的常用方法 java.util.Arrays 类能方便地操作数组,它提供的所有方法都是静态的. 具有以下功能: 给数组赋值:通过 fill 方法. 对数组排序:通过 sort 方法,按升序. 比较 ...

  9. AngularJS 最常用的八种功能

    转载地址:https://zhaoyanblog.com/archives/99.html 第一 迭代输出之ng-repeat标签ng-repeat让table ul ol等标签和js里的数组完美结合 ...

  10. 【转】priority_queue优先队列

    转自:http://www.cppblog.com/shyli/archive/2007/04/06/21366.html http://www.cppblog.com/shyli/archive/2 ...