文件下载地址:

https://github.com/mufasa007/myblog/tree/master/%E9%9B%B7%E8%BE%BE%E6%97%A0%E7%BA%BF%E7%94%B5%E7%B3%BB%E5%88%97%EF%BC%88%E4%B8%80%EF%BC%89%E5%87%A0%E7%A7%8D%E5%B8%B8%E8%A7%81%E7%9A%84%E5%B9%85%E5%BA%A6%E5%88%86%E5%B8%83%E5%87%BD%E6%95%B0%EF%BC%88matlab%EF%BC%89

一,瑞利幅度分布模型

  ① 常规模型

  

function [fx, Fx, Exn, Ex] = pdf_rayleigh(x, sigma, n)
fx = x./(sigma.^2).*exp(-1.*x.^2./(2.*sigma.^2));
Fx = 1 - exp(-x.^2/(2.*sigma.^2));
Exn = 2.^(n./2).*sigma.^2.*gamma(1+n./2);
Ex = sqrt(pi/(2.*sigma));
end

  

  ②AB模型

  

function [fA] = pdf_ABrayleigh(A, B)
fA = 1/B.*exp(-1.*(A/B));
end

  

二,对数正态分布模型

   

function [fx, Fx, Exn, Ex, Dx] = pdf_lognormal(x, sigma, v, n)
fx = 1./(sqrt(2.*pi).*sigma.*x).*exp(-1.*(log(x)-v).^2./(2.*sigma.^2));
Fx = 1 - exp(-((log(x)-v)/sigma).^2/(2.*sigma.^2));
Exn = exp(1/2.*(n.*sigma).^2+n.*v);
Ex = v.*exp((sigma.^2)/2);
Dx = v.^2.*exp(sigma.^2).*(exp(sigma.^2)-1);
end

三,韦布尔幅度分布模型

 

function [fx, Fx, Exn, Ex, Dx] = pdf_weibull(x, alpha, beta, n)
fx = alpha./beta.*(x./beta).^(alpha-1).*exp(-(x./beta).^alpha);
Fx = 1 - exp(-(x./beta).^alpha);
Exn = beta.^n.*gamma(n./alpha+1);
Ex = beta.*gamma(1./alpha+1);
Dx = beta.^2.*(gamma(2./alpha + 1) - gamma(1./alpha + 1).^2);
end

 

四,k分布

  

function [fx, Fx, Exn] = pdf_k(x, c, v, n)
fx = (2.*c./gamma(v)).*(c.*x./2).^v.*besselk(v-1,c.*x);
Fx = 1 - 2./gamma(v).*(c.*x./2).^v.*besselk(v,c.*x);
Exn = gamma(n./2+1).*gamma(n./2+v)./gamma(v).*(2./c).^n;
end

  

五,Gamma分布

   

function [fx, Ex, Dx] = pdf_gamma(x, v, alpha)
fx = alpha.^v/gamma(v).*x.^(v-1).*exp(-alpha.*x);
Ex = v/alpha;
Dx = v/alpha^2;
end

  

六,测试运行程序

clc;
%% 测试k分布v参数
% x = 0:0.01:15;
% c=1;
% n=1;
% figure;
% [fx0, Fx, Exn] = pdf_k(x, c, 1, n);
% [fx1, Fx, Exn] = pdf_k(x, c, 2, n);
% [fx2, Fx, Exn] = pdf_k(x, c, 3, n);
% [fx3, Fx, Exn] = pdf_k(x, c, 4, n);
% [fx4, Fx, Exn, Ex, Dx] = pdf_lognormal(x, 2.5, v, n);
% plot(x,fx0, x,fx1, x,fx2, x,fx3); %% 测试k分布c参数
% x = 0:0.01:30;
% v=2;
% n=1;
% figure;
% [fx0, Fx, Exn] = pdf_k(x, 0.2, v, n);
% [fx1, Fx, Exn] = pdf_k(x, 0.25, v, n);
% [fx2, Fx, Exn] = pdf_k(x, 0.5, v, n);
% [fx3, Fx, Exn] = pdf_k(x, 1, v, n);
% % [fx4, Fx, Exn, Ex, Dx] = pdf_lognormal(x, 2.5, v, n);
% plot(x,fx0, x,fx1, x,fx2, x,fx3); %% 测试韦布尔分布beta参数
% x = 0:0.01:8;
% alpha=3;
% n=1;
% figure;
% [fx0, Fx, Exn, Ex, Dx] = pdf_weibull(x, alpha, 1, n);
% [fx1, Fx, Exn, Ex, Dx] = pdf_weibull(x, alpha, 2, n);
% [fx2, Fx, Exn, Ex, Dx] = pdf_weibull(x, alpha, 3, n);
% [fx3, Fx, Exn, Ex, Dx] = pdf_weibull(x, alpha, 4, n);
% % [fx4, Fx, Exn, Ex, Dx] = pdf_lognormal(x, 2.5, v, n);
% plot(x,fx0, x,fx1, x,fx2, x,fx3); %% 测试韦布尔分布alpha参数
% x = 0:0.01:3;
% beta=1;
% n=1;
% figure;
% [fx0, Fx, Exn, Ex, Dx] = pdf_weibull(x, 0.5, beta, n);
% [fx1, Fx, Exn, Ex, Dx] = pdf_weibull(x, 1, beta, n);
% [fx2, Fx, Exn, Ex, Dx] = pdf_weibull(x, 2, beta, n);
% [fx3, Fx, Exn, Ex, Dx] = pdf_weibull(x, 3, beta, n);
% % [fx4, Fx, Exn, Ex, Dx] = pdf_lognormal(x, 2.5, v, n);
% plot(x,fx0, x,fx1, x,fx2, x,fx3); %% 测试对数正态v参数
% x = 0:0.1:20;
% sigma=1;
% n=1;
% figure;
% [fx0, Fx, Exn, Ex, Dx] = pdf_lognormal(x, sigma, 0.5, n);
% [fx1, Fx, Exn, Ex, Dx] = pdf_lognormal(x, sigma, 1, n);
% [fx2, Fx, Exn, Ex, Dx] = pdf_lognormal(x, sigma, 2, n);
% [fx3, Fx, Exn, Ex, Dx] = pdf_lognormal(x, sigma, 3, n);
% % [fx4, Fx, Exn, Ex, Dx] = pdf_lognormal(x, 2.5, v, n);
% plot(x,fx0, x,fx1, x,fx2, x,fx3); %% 测试对数正态sigma参数
% x = 0:0.1:5;
% v=0;
% n=1;
% figure;
% [fx0, Fx, Exn, Ex, Dx] = pdf_lognormal(x, 0.3, v, n);
% [fx1, Fx, Exn, Ex, Dx] = pdf_lognormal(x, 0.5, v, n);
% [fx2, Fx, Exn, Ex, Dx] = pdf_lognormal(x, 1, v, n);
% [fx3, Fx, Exn, Ex, Dx] = pdf_lognormal(x, 2, v, n);
% % [fx4, Fx, Exn, Ex, Dx] = pdf_lognormal(x, 2.5, v, n);
% plot(x,fx0, x,fx1, x,fx2, x,fx3); %% 测试rayleigh_AB分布函数
% figure;
% x=0:0.1:8;
% [fx0] = pdf_ABrayleigh(x, 0.5);
% [fx1] = pdf_ABrayleigh(x, 1);
% [fx2] = pdf_ABrayleigh(x, 2);
% [fx3] = pdf_ABrayleigh(x, 3);
% [fx4] = pdf_ABrayleigh(x, 4);
% plot(x,fx0, x,fx1, x,fx2, x,fx3, x,fx4); %% 测试rayleigh分布函数
% n = 1;
% figure;
% [fx0, Ex0, Dx0] = pdf_rayleigh(x, 0.5, n);
% [fx1, Ex1, Dx1] = pdf_rayleigh(x, 1, n);
% [fx2, Ex2, Dx2] = pdf_rayleigh(x, 1.5, n);
% [fx3, Ex3, Dx3] = pdf_rayleigh(x, 2, n);
% [fx4, Ex4, Dx4] = pdf_rayleigh(x, 2.5, n);
% plot(x,fx0, x,fx1, x,fx2, x,fx3, x,fx4); %% 测试gamma分布v参数
% x = 0:0.1:10;
% alpha = 1;
% figure;
% [fx0, Ex0, Dx0] = pdf_gamma(x, 0.5, alpha);
% [fx1, Ex1, Dx1] = pdf_gamma(x, 1, alpha);
% [fx2, Ex2, Dx2] = pdf_gamma(x, 2, alpha);
% [fx3, Ex3, Dx3] = pdf_gamma(x, 3, alpha);
% plot(x,fx0, x,fx1, x,fx2, x,fx3); %% 测试gamma分布alpha参数
% x = 0:0.1:10;
% alpha = 1;
% figure;
% [fx0, Ex0, Dx0] = pdf_gamma(x, v, 0.5);
% [fx1, Ex1, Dx1] = pdf_gamma(x, v, 1);
% [fx2, Ex2, Dx2] = pdf_gamma(x, v, 2);
% [fx3, Ex3, Dx3] = pdf_gamma(x, v, 3);
% plot(x,fx0, x,fx1, x,fx2, x,fx3);

  

雷达无线电系列(一)几种常见的幅度分布函数(matlab)的更多相关文章

  1. 雷达无线电系列(二)经典CFAR算法图文解析与实现(matlab)

    一,CFAR基础知识介绍 简介 恒虚警检测技术是指雷达系统在保持虚警概率恒定条件下对接收机输出的信号与噪声作判别以确定目标信号是否存在的技术. 前提 由于接收机输出端中肯定存有噪声(包括大气噪声.人为 ...

  2. 雷达无线电系列(三)经典CFAR算法门限因子alpha计算(matlab)

    前言 本文汇集CA.SO.GO.OS.杂波图等恒虚警算法的门限因子求解方法及其函数 1,CA-CFAR [非常简单,可以直接求解] %% 均值恒虚警_门限因子计算公式 %% 版本:v1 %% 时间:2 ...

  3. ElasticSearch 学习记录之ES几种常见的聚合操作

    ES几种常见的聚合操作 普通聚合 POST /product/_search { "size": 0, "aggs": { "agg_city&quo ...

  4. 一文读懂四种常见的XML解析技术

    之前的文章我们讲解了<XML系列教程之Schema技术_上海尚学堂java培训技术干货><XML的概念.特点与作用.XML申明_上海Java培训技术干货>,大家可以点击回顾一下 ...

  5. Spring RestTemplate中几种常见的请求方式

    https://github.com/lenve/SimpleSpringCloud/tree/master/RestTemplate在Spring Cloud中服务的发现与消费一文中,当我们从服务消 ...

  6. Spring RestTemplate中几种常见的请求方式GET请求 POST请求 PUT请求 DELETE请求

    Spring RestTemplate中几种常见的请求方式 原文地址: https://blog.csdn.net/u012702547/article/details/77917939   版权声明 ...

  7. 几种常见web攻击手段及其防御方式

    XSS(跨站脚本攻击) CSRF(跨站请求伪造) SQL注入 DDOS web安全系列目录 总结几种常见web攻击手段极其防御方式 总结几种常见的安全算法 XSS 概念 全称是跨站脚本攻击(Cross ...

  8. 总结几种常见web攻击手段及其防御方式

    本文简单介绍几种常见的攻击手段及其防御方式 XSS(跨站脚本攻击) CSRF(跨站请求伪造) SQL注入 DDOS web安全系列目录 总结几种常见web攻击手段极其防御方式 总结几种常见的安全算法 ...

  9. css3系列-2.css中常见的样式属性和值

    css3系列-2.css中常见的样式属性和值 继续上一篇文章的继续了解css的基础知识,关注我微信公众号:全栈学习笔记 css中常见的样式属性和值 字体与颜色 背景属性 文本属性 边框属性 内外边距 ...

随机推荐

  1. Ubuntu 备份系统为ISO镜像 & 解决ISO限制4GB大小 & Clone当前系统到其他电脑

    看标题,标题涵盖了3个部分,Ubuntu 备份系统为ISO镜像,  解决ISO限制4GB大小 ,  Clone当前系统到其他电脑  我们就从三个部分说起. Ubuntu 备份系统为ISO镜像 在Win ...

  2. stylus 样式

  3. 推荐一款免费的PDF转换工具 | PDFCandy

    相信大家在用的PDF转换工具也很多,下面良心推荐这款软件(PDFCandy)给大家,方便在今后的工作中进行运用.提高大家的工作效率. PDFCandy分为两种:网页端和客户端.(根据大家的喜好度来进行 ...

  4. 与下位机或设备的通信解析优化的一点功能:T4+动态编译

        去年接触的一个项目中,需要通过TCP与设备进行对接的,传的是Modbus协议的数据,然后后台需要可以动态配置协议解析的方式,即寄存器的解析方式,,配置信息有:Key,数据Index,源数据类型 ...

  5. Falsy Bouncer 过滤数组假值

    过滤数组假值 (真假美猴王) 删除数组中的所有假值. 在JavaScript中,假值有false.null.0."".undefined 和NaN. function bounce ...

  6. Centos 7安装python3(PY3.6)

    # 安装 sudo yum install centos-release-scl sudo yum install rh-python36 #开启 scl enable rh-python36 bas ...

  7. springboot增删改查

    改https://blog.csdn.net/weixin_42338186/article/details/81561592 添加https://blog.csdn.net/weixin_42338 ...

  8. 发现一款适合php网站的管理软件——kodexplorer,能取代ftp

    今天偶然看到可以利用可道云来管理网站的文件.可道云不需要数据库,因此搭建非常简单.搭建的方法也很简单.传统的 WordPress 站点的文件管理,通常是是通过 FTP 或者服务器面板自带的文件管理器来 ...

  9. 使用 python 实现π的计算

    1.π的神奇 π是一个无数人追随的真正的神奇数字.我不是很清楚一个永远重复的无理数的迷人之处.在我看来,我乐于计算π,也就是计算π的值.因为π是一个无理数,它是无限的.这就意味着任何对π的计算都仅仅是 ...

  10. gradle环境变量设置_配置注意事项

    看<Spring源码深度解析>的时候,在windows7系统中按照书里配置gradle环境变量,配置完后输入gradle -v,一直显示:'gradle'不是内部或外部命令,也不是可执行的 ...