LU分解(2)
接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法。这里需要了解lapapck中的一些函数。lapack中有一个函数名为gaxpy,所对应的矩阵计算公式是:x = Gx + y; 对应的Matlab代码如下:
function[L, U] =zgaxpylu(A)
%calculate LU decomposition based on Gaxpy operation
%the same way as zlu.m but differnt approach
[m, n] = size(A);
if m ~= n
error('current support square matrix only')
end
L = eye(n);
U = eye(n);
for k = 1:n
v = zeros(n, 1);
if k == 1
v(k:end) = A(k:end, k);
else
U(1:k-1,k) = L(1:k-1,1:k-1)\A(1:k-1,k);
v(k:end) = A(k:end, k) - L(k:end, 1:k-1)*U(1:k-1,k);
end
if k < n
L(k+1:end,k) = v(k+1:end)/v(k);
L(k, k) = 1;
end
U(k, k) = v(k);
end
将这段代码运行1500次,每次使用随机生成的高斯矩阵并和Matlab的lu分解结果对比,统计数据如下:
mean of my lu : 1.7676e-14
variance of my lu : 3.07075e-25
mean of matlab lu : 3.70416e-16
variance of matlab lu : 2.14989e-32
function [P, L, U] = zgaxpyplu(A)
%compute LU decomposition based on Gaxpy operation with pivoting
%aimed at improve the stability of LU decomposition
[m, n] = size(A);
if m ~= n
error('current support square matrix only')
end
P = eye(n);
L = eye(n);
U = zeros(n);
for k = 1:n
v = zeros(n, 1);
if k == 1
v(k:end) = A(k:end, 1);
else
U(1:k-1, k) = L(1:k-1, 1:k-1) \ A(1:k-1, k);
v(k:n) = A(k:n, k) - L(k:n, 1:k-1)*U(1:k-1, k);
end
%find the largest element in v(k:end)
[max_value, max_index] = max(v(k:end));
max_index = max_index + k - 1;
if max_index ~= k
%exchange the max_index-th row and k-th row
A([k max_index], k+1:n) = A([max_index k], k+1:n);
%exchange the max_index-th row and k-th row in L
if k > 1
L([k max_index], 1:k-1) = L([max_index k], 1:k-1);
end
P([k max_index], :) = P([max_index k], :);
v([k max_index]) = v([max_index k]);
end
if (abs(v(k)) > 1e-6) && (k < n)
v(k+1:end) = v(k+1:end) / v(k);
L(k+1:end, k) = v(k+1:end);
end
U(k, k) = v(k);
end
运行这段代码1500次,每次都使用随机生成的矩阵和Matlab的LU分解做对比,结果如下:
mean of my lu : 2.02547e-15
variance of my lu : 9.06349e-29
mean of matlab lu : 3.65765e-16
variance of matlab lu : 1.98304e-32
将每个算法和同类型的算法相比,使用gaxpy的算法都比之前的方法要好。但是现在有一个问题是使用pivot的算法居然比不使用pivot的算法没有足够显著的改进,当然这也证明了使用基于gaxpy运算可以提高LU分解的稳定性。
总结:LU分解是用于求解线性方程组最基本的矩阵分解方法,对于LU分解可以使用高斯消元法,也可以使用基于gaxpy的运算方法。但是从目前的结果来看,使用gaxpy运算可以极大的提高LU分解的稳定性。但是作为成熟的方法,使用lapack中对应的方法是最好的选择。
LU分解(2)的更多相关文章
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
- LU分解,Javascript代码
///A 为矩阵,这里写成一维数组,如 [1],[1,2,3,4] function GetLU(a) { var n = a.length;//矩阵的总数据数目 var s = Math.sqrt( ...
- matlab实现高斯消去法、LU分解
朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) ...
- LU分解(1)
1/6 LU 分解 LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵.对应的matlab代码如下: function[L, U] =zlu(A) % ZLU ...
- MATLAB矩阵的LU分解及在解线性方程组中的应用
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [ ...
- 线性代数笔记10——矩阵的LU分解
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...
- 矩阵分解---QR正交分解,LU分解
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...
- 计算方法 -- 解线性方程组直接法(LU分解、列主元高斯消元、追赶法)
#include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> ...
- 矩阵LU分解分块算法实现
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...
随机推荐
- android-个性化进度条
1.案例效果图 2.准备素材 progress1.png(78*78) progress2.png(78*78) ...
- cocos2d-x项目过程记录(cocos2d-x的新知)
1.给CCMenuItem带上点击参数(这是CCNode的一个属性) CCMenuItem *item = CCMenuItemSprite::create(unselectedPic, select ...
- The builder launch configuration could not be found
Export Wizard Error Errors occurred during the build Problems occured when invoking code from p ...
- 加载MSCOMCTL.OCX错误处理的几个关键
一.工程文件说明,两个版本Object={831FDD16-0C5C-11D2-A9FC-0000F8754DA1}#2.0#0; MSCOMCTL.OCXObject={831FDD16-0C5C- ...
- CSS控制表单
一个简单的网站注册页面制作. 创建CSS文件如下: @charset "utf-8"; /* CSS Document */ * { margin: 0px; padding: 0 ...
- web.xml配置详解 (及<context-param>配置作用 )
http://blog.csdn.net/guihaijinfen/article/details/8363839 <context-param>配置作用 http://blog.csdn ...
- MySQL 序列使用
MySQL 序列使用 MySQL序列是一组整数:1, 2, 3, ...,由于一张数据表只能有一个字段自增主键, 如果你想实现其他字段也实现自动增加,就可以使用MySQL序列来实现. 本章我们将介绍如 ...
- java_reflect_02
按我们所知道的.对于类中的method,constructor,field如果访问属性是private的情况下我们是访问不了的,但通过反射就可以做到 仔细分析api发现Method,Construct ...
- locate 不能使用
当需要查找一个文件,只知道文件名不知道路径,我们通常用locate,由于公司的服务器使用最小化安装的所以当locate 文件名,报错,提 示-bash: locate: command not fou ...
- highCharts 图表统计控件使用方法
1.首先引用js文件 在引用上面文件时,保证已经引用了jquery.js文件.且位置在上面两个文件之前. 2. <div id="container" style=" ...