LU分解(2)
接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法。这里需要了解lapapck中的一些函数。lapack中有一个函数名为gaxpy,所对应的矩阵计算公式是:x = Gx + y; 对应的Matlab代码如下:
function[L, U] =zgaxpylu(A)
%calculate LU decomposition based on Gaxpy operation
%the same way as zlu.m but differnt approach
[m, n] = size(A);
if m ~= n
error('current support square matrix only')
end
L = eye(n);
U = eye(n);
for k = 1:n
v = zeros(n, 1);
if k == 1
v(k:end) = A(k:end, k);
else
U(1:k-1,k) = L(1:k-1,1:k-1)\A(1:k-1,k);
v(k:end) = A(k:end, k) - L(k:end, 1:k-1)*U(1:k-1,k);
end
if k < n
L(k+1:end,k) = v(k+1:end)/v(k);
L(k, k) = 1;
end
U(k, k) = v(k);
end
将这段代码运行1500次,每次使用随机生成的高斯矩阵并和Matlab的lu分解结果对比,统计数据如下:
mean of my lu : 1.7676e-14
variance of my lu : 3.07075e-25
mean of matlab lu : 3.70416e-16
variance of matlab lu : 2.14989e-32
function [P, L, U] = zgaxpyplu(A)
%compute LU decomposition based on Gaxpy operation with pivoting
%aimed at improve the stability of LU decomposition
[m, n] = size(A);
if m ~= n
error('current support square matrix only')
end
P = eye(n);
L = eye(n);
U = zeros(n);
for k = 1:n
v = zeros(n, 1);
if k == 1
v(k:end) = A(k:end, 1);
else
U(1:k-1, k) = L(1:k-1, 1:k-1) \ A(1:k-1, k);
v(k:n) = A(k:n, k) - L(k:n, 1:k-1)*U(1:k-1, k);
end
%find the largest element in v(k:end)
[max_value, max_index] = max(v(k:end));
max_index = max_index + k - 1;
if max_index ~= k
%exchange the max_index-th row and k-th row
A([k max_index], k+1:n) = A([max_index k], k+1:n);
%exchange the max_index-th row and k-th row in L
if k > 1
L([k max_index], 1:k-1) = L([max_index k], 1:k-1);
end
P([k max_index], :) = P([max_index k], :);
v([k max_index]) = v([max_index k]);
end
if (abs(v(k)) > 1e-6) && (k < n)
v(k+1:end) = v(k+1:end) / v(k);
L(k+1:end, k) = v(k+1:end);
end
U(k, k) = v(k);
end
运行这段代码1500次,每次都使用随机生成的矩阵和Matlab的LU分解做对比,结果如下:
mean of my lu : 2.02547e-15
variance of my lu : 9.06349e-29
mean of matlab lu : 3.65765e-16
variance of matlab lu : 1.98304e-32
将每个算法和同类型的算法相比,使用gaxpy的算法都比之前的方法要好。但是现在有一个问题是使用pivot的算法居然比不使用pivot的算法没有足够显著的改进,当然这也证明了使用基于gaxpy运算可以提高LU分解的稳定性。
总结:LU分解是用于求解线性方程组最基本的矩阵分解方法,对于LU分解可以使用高斯消元法,也可以使用基于gaxpy的运算方法。但是从目前的结果来看,使用gaxpy运算可以极大的提高LU分解的稳定性。但是作为成熟的方法,使用lapack中对应的方法是最好的选择。
LU分解(2)的更多相关文章
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
- LU分解,Javascript代码
///A 为矩阵,这里写成一维数组,如 [1],[1,2,3,4] function GetLU(a) { var n = a.length;//矩阵的总数据数目 var s = Math.sqrt( ...
- matlab实现高斯消去法、LU分解
朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) ...
- LU分解(1)
1/6 LU 分解 LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵.对应的matlab代码如下: function[L, U] =zlu(A) % ZLU ...
- MATLAB矩阵的LU分解及在解线性方程组中的应用
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [ ...
- 线性代数笔记10——矩阵的LU分解
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...
- 矩阵分解---QR正交分解,LU分解
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...
- 计算方法 -- 解线性方程组直接法(LU分解、列主元高斯消元、追赶法)
#include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> ...
- 矩阵LU分解分块算法实现
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...
随机推荐
- zoj 2112 Dynamic Rankings(主席树&动态第k大)
Dynamic Rankings Time Limit: 10 Seconds Memory Limit: 32768 KB The Company Dynamic Rankings has ...
- dir()函数:罗列出参数所有的功能列表
#coding=utf-8import sysprint dir(sys)#罗列出参数中所有的功能列表sys.__doc__#调用参数中的函数 #dir()函数扩展展详解python中dir()函数不 ...
- Web项目练习总结(错误校正篇)
老师布置任务,从SVN上弄个项目来练练手,熟悉下过程. myeclipse安装SVN 然后把MobileManageSys下下来 然后漫长的等待... 然后配置数据库,导入,这里用的是SQLyog,其 ...
- 解决ASP.NET中ReportView与IE11的兼容性问题
前久发现以前用ReportView开发的一个软件的报表,在IE11上运行时出错,陆续查了好几天才解决了问题. 开发环境: VS2010,ReportView 10.0.402,RDLC报表模板 问题: ...
- makecert 制作数字证书
在MS的SDK6.0中有个证书生成工具makecert.exe, 你可以使用这个工具来生成测试用的证书. 第一步,生成一个自签名的根证书(issuer,签发者). >makecert -n &q ...
- java_annotation_01
一,Annotation简介 J2SE5.0提供了很多新的我,其中一个很重要的我就是对元数据的支持,在J2SE5.0中,这种元数据被称为注释,通过使用注释,程序开发人员可以在不改变原有逻辑的情况下,在 ...
- InstallShield安装包中集成第三方安装包的方案选择[转]
我们在制作安装包时,有些情况下会涉及第三方安装的集成,这里将讨论如何调用安装第三方包,以及需要注意的事项. 第三方安装包的介质类型有很多,主要有:单独的一个Setup.exe,单独的一个msi包, ...
- [C#] 用一种更优美的方式来替换掉又多又长的switch-case代码段
switch-case语句是我们编码过程中常用的一种分支语句.然而正所谓成也萧何败萧何,每当我们向一个已经拥有了成百上千行的switch-case代码段中添加新的case分支的时候,我们是否有过为代码 ...
- extjs之messagebox按钮显示中文
在extjs中我们用到了很多的提示框,但是在对话框按钮上面显示的都是英文的ok.yes.no.cancel,这里给出一个方法,能够使得提示框的按钮文本显示问中文. extjs在加载完成之后会调用页面的 ...
- 无法解析属性“mode”的值。错误为: 枚举值必须是以下各值中的一个: RemoteOnly, On, Off。
Off首字母要大写,注意大小写 <customErrors mode="Off"> <error statusCode="404" ...