题意:给定n(n<=100)个人,每个人有个固定的屌丝值D。 起初这些人是站成一行,当第i个人第j个去面试的时候他的值是 Di*j。
要求所有人面试之后 这些值加起来是最小的。
队伍站成一行(其实就是个队列), 队列头部里的人可以到一个小黑屋子里,先进黑屋子的必须后出来(相当于一个栈)。
然后队首的人可以选择进黑屋或者去面试,黑屋里的也可以选择去面试。 要求最少的Di*j 值之和。
===============================================================================
题目分析:
这个题目也是想了好久, 最初看的时候一直认为DP式子是:
 dp[L][R] = min( dp[L][R], dp[L+1][k] + a[L]*k + dp[k+1][R] )   (L<= k <= R)
起初是这样认为的。但是后来发现这样的子结构其实是不对的, 我们对其位置交换的时候会出现一些问题。
后来看看题解发现问题所在:
子结构其实应该是 DP[L][R] 代表区间L,R之间 (0,R-L)次选择的方式。并不应该是(L,R)的选择方式。
(sum[i] 代表从a[0]加到a[i])
故得到一个递推式: dp[L][R] = min(dp[L][R], dp[L+1][L+k] + a[L]*k + dp[L+k+1][R] + (sum[R]-sum[L+k])*(k+1) );
关键是:为什么要加上他 (sum[R]-sum[L+k])*(k+1) 。 前面我们  dp[L+1][L+k] 这个区间不用加是因为我们最先选的就是这个区间,所以不加。
至于区间dp[L+k+1][R],  因为我们的算的是区间(L+k+1,R)的第k次选择的结果,而k是(0,R-L-k-1)的。因此我们少加上了 (sum[R]-sum[L+k])*(k+1) 。
=========================================================================================
 
 
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL INF = 0xfffffff;
const LL maxn = ;
int dp[maxn][maxn], a[maxn], sum[maxn]; int DFS(int L,int R)
{
if(dp[L][R])
return dp[L][R];
if(L > R)
return ; dp[L][R] = INF;
for(int k=; k<=R-L; k++)///在区间【L,R】内,这个数该如何去选择
{///假设第L个数字,要在第K次选择
dp[L][R] = min(dp[L][R], DFS(L+, L+k) + a[L]*k + DFS(L+k+,R) + (sum[R]-sum[L+k])*(k+) );
}
// printf("dp[%d][%d]:%d\n",L, R, dp[L][R]);
return dp[L][R];
}
/*
第L个元素第k个出场拍,
*/
int main()
{
int T, n, cas = ;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
memset(dp, , sizeof(dp));
for(int i=; i<n; i++)
scanf("%d", &a[i]);
sum[] = a[]; for(int i=; i<n; i++)
sum[i] = sum[i-] + a[i]; printf("Case #%d: %d\n",cas ++, DFS(, n-));
}
return ;
} /*
2
2
4 5 2
5
1 2 3 4 5 5
5 4 3 2 2
*/

HDU 4283 You Are the One的更多相关文章

  1. hdu 4283 区间dp

    You Are the One Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU 4283 You Are the One(区间DP(最优出栈顺序))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4283 题目大意:有一群屌丝,每个屌丝有个屌丝值,如果他第K个上场,屌丝值就为a[i]*(k-1),通过 ...

  3. HDU 4283:You Are the One(区间DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=4283 题意:有n个数字,不操作的情况下从左到右按顺序输出,但是可以先让前面的数字进栈,让后面的数字输出,然后栈里 ...

  4. HDU 4283 You Are the One (12年天津 区间DP)

    题意:有一个队列,每个人有一个愤怒值a[i],如果他是第k个上场,不开心指数就为(k-1)*a[i].但是边上有一个小黑屋(其实就是个堆栈),可以一定程度上调整上场程序 思路:枚举区间和每个人第几个上 ...

  5. 区间DP HDU 4283

    t个数据 n个权值 1->n 可以入栈调整顺序 花费 第k个出来 w[i]*(k-1); 求花费最少 #include<stdio.h> #include<string.h&g ...

  6. hdu 4283 You Are the One 区间dp

    You Are the One Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. HDU 4283 You are the one(间隔DP)

    标题效果: The TV shows such as You Are the One has been very popular. In order to meet the need of boys ...

  8. You Are the One HDU - 4283 (区间DP)

    Problem Description The TV shows such as You Are the One has been very popular. In order to meet the ...

  9. HDU 4283 You Are the One 【区间DP】

    <题目链接> 题目大意: 有$n$个人排成一排要上台表演,每个人有一个屌丝值$pi$.第i个上台表演的人,他的不满意度为$(i-1)*p_i$.现在有一个类似于栈的黑屋子,你可以让某些人进 ...

随机推荐

  1. Objective-C:KVC

    1 概述 1.1 访问方法 Key-value coding(KVC)是一种间接访问对象属性的机制,类似键值对,通过名字(或键)可以直接获得对象的属性值.事实上,key-value coding定义了 ...

  2. Java多线程——其他工具类CyclicBarrier、CountDownLatch和Exchange

    CyclicBarrier 适用于:创建一组任务,它们并行地执行任务,然后在进行下一个步骤之前等待,直至所有任务完成.它使得所有的并行任务都将在栅栏处列队,因此可以一致地向前移动. 表示大家彼此等待, ...

  3. List转xml

    1. List<Model> list = new List<Model>(); Model zj = new Model(); zj.id = ; zj.name = &qu ...

  4. JAVA JDK 1.6 API中文版.CHM打开chm提示,“ 已取消到该网页的导航”

    JAVA  JDK 1.6 API中文版.CHM打开chm提示,“ 已取消到该网页的导航” silent fish 装了win7后,打开chm文件,发现很多在xp系统打开正常的chm文件竟然出现问题, ...

  5. ASP.NET 3.5路由总结篇

    URL Routing是非常重要的一块技术体系,笔者将URL Routing的知识进行梳理后得出本文,旨在同大家分享,希望能够起到抛砖引玉的作用. 1.    什么是URL Routing? 所谓UR ...

  6. oracle中不曾熟悉的 to_char、to_number(未完待续)

    十进制       十六进制88               58 用法一:Converts a HEX number  to  o FLOAT (转换一个十六进制数的浮标) SQL> sele ...

  7. oracle使用LEFT JOIN关联产生的问题在查询结果中使用CASE WHEN 无法判断

    oracle使用LEFT JOIN关联产生的问题在查询结果中使用CASE WHEN 无法判断 查询方式一: SELECT CASE WHEN (SELECT CAST(SUM(CASE ) THEN ...

  8. jQuery - 获取内容和属性

    jQuery 拥有可操作 HTML 元素和属性的强大方法. jQuery DOM 操作 jQuery 中非常重要的部分,就是操作 DOM 的能力. jQuery 提供一系列与 DOM 相关的方法,这使 ...

  9. HDU 1207

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1207 四柱汉诺塔问题 当 r = (sqrt(8*n+1)-1)/2 时, 存在 count = (n ...

  10. JSP HTML区别

    1.最简单的区别就是,HTML能直接打开,jsp只能发布到Tomact等服务器上才能打开2.定义上HTML页面是静态页面可以直接运行,JSP页面是动态页它运行时需要转换成servlet.3.他们的表头 ...