Problem Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

is in the lower left corner:

9 2

-4 1

-1 8

and has a sum of 15.

Input

The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4

0 -2 -7 0 9 2 -6 2

-4 1 -4 1 -1

8 0 -2

Sample Output

15

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int a[2000];
int dp[150][150]; int main(){
int n;
while(scanf("%d",&n)==1){
int t;
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&t);
dp[i][j]=t+dp[i-1][j];
/// printf("i=%d",i);
}
}
// for(int i=0;i<=n;i++){
// for(int j=0;j<=n;j++){
// printf("%4d",dp[i][j]);
// }
// printf("\n");
// }
int maxx=-1000;
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
int sum=0;
for(int k=1;k<=n;k++){
t=dp[j][k]-dp[i-1][k];
sum+=t;
if(sum<0) sum=0;
if(sum>maxx) maxx=sum;
}
}
}
printf("%d\n",maxx);
}
return 0;
}

HDOJ 1081(ZOJ 1074) To The Max(动态规划)的更多相关文章

  1. ZOJ 1074 To the Max

    原题链接 题目大意:这是一道好题.在<算法导论>这本书里面,有一节是介绍如何求最大子序列的.这道题有点类似,区别是从数组变成了矩阵,求最大子矩阵. 解法:完全没有算法功底的人当然不知道最大 ...

  2. ZOJ 1074 To the Max(DP 最大子矩阵和)

    To the Max Time Limit: 2 Seconds      Memory Limit: 65536 KB Problem Given a two-dimensional array o ...

  3. HDU 1074 Doing Homework (动态规划,位运算)

    HDU 1074 Doing Homework (动态规划,位运算) Description Ignatius has just come back school from the 30th ACM/ ...

  4. 【动态规划】HDU 1081 & XMU 1031 To the Max

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1081 http://acm.xmu.edu.cn/JudgeOnline/problem.php?i ...

  5. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  6. POJ 1050 To the Max -- 动态规划

    题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...

  7. [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  8. ZOJ 2672 Fibonacci Subsequence(动态规划+hash)

    题意:在给定的数组里,寻找一个最长的序列,满足ai-2+ai-1=ai.并输出这个序列. 很容易想到一个DP方程 dp[i][j]=max(dp[k][i])+1. (a[k]+a[i]==a[j], ...

  9. ZOJ 1074 最大子矩阵和

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

随机推荐

  1. (转)php连接mysql如何判断数据为空?

    <?php$result_a=mysql_query("select * from product_tag where product_id=$row[id]");$num ...

  2. 关于打开ILDASM的方法

      1.通过VisualStudio在开始菜单下的Microsoft Visual Studio 2008/Visual Studio Tools/中的命令提示符中输入ildasm即可 2.将其添加至 ...

  3. python基础知识四

    函数是重用的程序段.它们允许你给一块语句一个名称, 然后你可以在你的程序的任何地方使用这个名称多次地运行这个语句块.这被成为调用函数.我们已经使用了许多内建的函数,比如len和range. 函数通过d ...

  4. js -去掉首尾的空格.

    function trimFE (str) { return str.replace(/^\s\s*/, '').replace(/\s\s*$/, ''); }

  5. What's DB2 模式?

    近期负责一个银行方面的项目,需要用到DB2实现多数据库版本切换.初步接触DB2,对于它的管理工具(IBM DATA STUDIO)虽然与ORACLE\MSSQL大同小异,但还是有些东西不一样的.比如什 ...

  6. http和HTTPS的区别及SSL介绍

    简单来说: 在URL前加https://前缀表明是用SSL加密的. 你的电脑与服务器之间收发的信息传输将更加安全. Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定.  ...

  7. Windowsphone 之xml序列化和反序列化的应用(WebService解析返回的数据DataSet )

    关于Xml的序列化和反序列化: 可以看这篇文章,http://www.cnblogs.com/Windows-phone/p/3243575.html WebService解析返回的数据DataSet ...

  8. 无线端web开发学习总结

    无线web开发之前要做一些准备工作:一.必需的reset样式库1.其中的重点是盒模型box-sizing:由原来pc端的content-box改为border-box. *, *:before, *: ...

  9. u-boot Makefile Source Test

    一.概述 笔者已经写了一篇实现目标文件与源码分开的makefile测试实验,但是觉得不够完美,没有更多的体现u-boot Makefile的工作原理和特点.所以,决定重新修订,使之更加充分的接近u-b ...

  10. ServletContext与application的关系

    ServletContext 就是application 生命周期是从servletContext创建到服务器关闭 其实servletContext和application 是一样的,就相当于一个类创 ...