BZOJ_1626_[Usaco2007_Dec]_Building_Roads_修建道路_(Kruskal)
描述
http://www.lydsy.com/JudgeOnline/problem.php?id=1626
给出\(n\)个点的坐标,其中一些点已经连通,现在要把所有点连通,求修路的最小长度.
分析
已经连好一些边的最小生成树问题.
这里顺带复习了一下Prim和Krusakal.
Prim的证明:
设当前已经连好的树为\(T\),当前最小的边为\(e\),我们来证明\(e\)一定在最小生成树\(G\)中.
假设\(e\)不在\(G\)中,则连通\(G-T\)和\(T\)的边\(e'\)一定比\(e\)大(或相等).此时我们在\(G\)中加入\(e\),会形成环,去掉环中的\(e'\),树依然连通,而花费更小了,这与\(G\)是最小生成树矛盾.(如果\(e\)与\(e'\)相等那么虽然花费不会更小,也就是说\(e\)可以不再\(G\)中,但是我们也可以用\(e\)替换\(e'\),换言之,\(e\)在\(G\)中是不错误的.)
所以\(e\)一定在最小生成树\(G\)中.
Kruskal的证明:
设当前连接两个不连通分量的最小的边为\(e\),我们来证明\(e\)一定在最小生成树\(G\)中.
假设\(e\)不再\(G\)中,则连通这两个分量的边\(e'\)一定比\(e\)大(或相等).此时我们 在\(G\)中加入\(e\),会形成环,去掉环中的\(e'\),树依然连通,而花费更小了,这与\(G\)是最小生成树矛盾.(如果\(e\)与 \(e'\)相等那么虽然花费不会更小,也就是说\(e\)可以不再\(G\)中,但是我们也可以用\(e\)替换\(e'\),换言之,\(e\)在 \(G\)中是不错误的.)
#include <bits/stdc++.h>
using namespace std; const int maxn=+;
struct pt{
double x,y;
pt(double x=,double y=):x(x),y(y){}
}p[maxn];
struct edge{
int from,to;
double d;
edge(){}
edge(int from,int to,double d):from(from),to(to),d(d){}
bool operator < (const edge &rhs) const { return d<rhs.d; }
}g[maxn*maxn];
int n,m,cnt=;
int f[maxn];
double ans;
inline double dis(pt a,pt b){ return sqrt(pow(a.x-b.x,)+pow(a.y-b.y,)); }
inline int find(int x){ return x==f[x]?x:f[x]=find(f[x]); }
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
f[i]=i;
}
for(int i=;i<=m;i++){
int u,v; scanf("%d%d",&u,&v);
int fu=find(u),fv=find(v);
if(fu!=fv) f[fu]=fv,cnt++;
}
for(int i=;i<=n;i++)for(int j=;j<=n;j++) g[(i-)*n+j]=edge(i,j,dis(p[i],p[j]));
sort(g+,g++n*n);
int tot=n*n;
for(int i=;i<=tot,cnt<=n;i++){
int fx=find(g[i].from),fy=find(g[i].to);
if(fx!=fy){
f[fx]=fy;
ans+=dis(p[g[i].from],p[g[i].to]);
cnt++;
}
}
printf("%.2lf\n",ans);
return ;
}
BZOJ_1626_[Usaco2007_Dec]_Building_Roads_修建道路_(Kruskal)的更多相关文章
- 【BZOJ】1626: [Usaco2007 Dec]Building Roads 修建道路(kruskal)
http://www.lydsy.com/JudgeOnline/problem.php?id=1626 依旧是水题..太水了.. #include <cstdio> #include & ...
- BZOJ 1626 [Usaco2007 Dec]Building Roads 修建道路:kruskal(最小生成树)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1626 题意: 有n个农场,坐标为(x[i],y[i]). 有m条原先就修好的路,连接农场( ...
- BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )
计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...
- bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树
1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec Memory Limit: 64 MB Description Farmer J ...
- 【二分+SPFA】修建道路(road)
(四五年以前的老草稿,作为强迫症还是发布出来吧) 修建道路(road.pas/c/cpp) [问题描述] NOIP2012的参赛者LG异想天开打算修建一条磁悬浮列车的通道连接现代OI王国的首都(编号为 ...
- Codevs_1403_新三国争霸_(Kruskal+动态规划)
描述 http://codevs.cn/problem/1403/ 共t天,n个点,m条边,选择每条边要付出不同的代价,其中某些天某些边不能用,要保证每一天n个点都是连通的,如果换方案要付出额外的代价 ...
- [Usaco2007 Dec]Building Roads 修建道路
题目描述 Farmer John最近得到了一些新的农场,他想新修一些道路使得他的所有农场可以经过原有的或是新修的道路互达(也就是说,从任一个农场都可以经过一些首尾相连道路到达剩下的所有农场).有些农场 ...
- BZOJ-1196 公路修建问题 最小生成树Kruskal+(二分??)
题目中一句话,最大费用最小,这么明显的二分的提示(by 以前morestep学长的经验传授)...但完全没二分,1A后感觉很虚.. 1196: [HNOI2006]公路修建问题 Time Limit: ...
- bzoj1626[Usaco2007 Dec]Building Roads 修建道路
Description Farmer John最近得到了一些新的农场,他想新修一些道路使得他的所有农场可以经过原有的或是新修的道路互达(也就是说,从任一个农场都可以经过一些首尾相连道路到达剩下的所有农 ...
随机推荐
- C++ map.insert 传参类型不同,构造/析构次数不同
1. 传参方式 使用 insert 为 map 插值时,insert 的传参包含以下几种可能: make_pair 生成对象 pair(key_type, value_type) 生成对象 pair( ...
- redis_笔记
1.redis是什么 这个问题的结果影响了我们怎么用redis.如果你认为redis是一个key value store,那可能会用它来 代替mysql:如果认为它是一个可以持久化的cache,可能只 ...
- json,serialze之格式
<?php echo 'array-json:' . "\n"; $arr = array('key1'=>'value1', 'key2' => 'value2 ...
- C#通过ODAC访问Oracle12c
昨天晚上刚装好Oracle12c并配制好了PLSQL Developer开发环境.今天继续完善一下,讲讲在C#中如何访问Oracle12c. 其实我们运用老早的ADO.NET也可以连接,但是在.NET ...
- 判断滚动条到底部的JS代码
这篇文章介绍了判断滚动条到底部的JS代码,有需要的朋友可以参考一下 判断滚动条到底部,需要用到DOM的三个属性值,即scrollTop.clientHeight.scrollHeight. scrol ...
- ZeroMQ/jzmq安装使用
环境: No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 12.04.2 LTS Release: 12 ...
- 数位DP入门之hdu 3555 Bomb
hdu 3555 Bomb 题意: 在1~N(1<=N<=2^63-1)范围内找出含有 ‘49’的数的个数: 与hdu 2089 不要62的区别:2089是找不不含 '4'和 '62'的区 ...
- Win10 IIS以及ASP.NET 4.0配置问题日志
问题日志 升级到Win10并安装了VS2015后,原有ASP.NET 4.0项目在本机的IIS部署出现问题. 安装IIS: 在[控制面板.程序.启用或关闭Windows功能.Internet Info ...
- 成为Java GC专家(5)—Java性能调优原则
并不是每个程序都需要调优.如果一个程序性能表现和预期一样,你不必付出额外的精力去提高它的性能.然而,在程序调试完成之后,很难马上就满足它的性能需求,于是就有了调优这项工作.无论哪种编程语言,对应用程序 ...
- PHP完整环境搭建
Linux(CentOS 7)+ Nginx(1.10.2)+ Mysql(5.7.16)+ PHP(7.0.12) 首先安装Linux系统,我以虚拟机安装来做示例,先去下载 VitualBox,这是 ...