PCA与特征选取
一、什么是PCA
PCA,即PrincipalComponents Analysis,也就是主成份分析;
通俗的讲,就是寻找一系列的投影方向,高维数据按照这些方向投影后其方差最大化(方差最大的即是第一主成份,方差次大的为第二主成份...
如下图:数据点沿该方向投影后,方差最大,投影之后,由于各个点之间的距离之最大化的,因此彼此之间是最容易区分的
二、一些应用
1、数据降维
比如比较常见的人脸识别,假设有10副脸部图像,每副图像存贮为512*512大小的矩阵,经过特征提取后features可能为10000甚至更多,形成一个10*10000的矩阵;针对如此多的特征进行识别计算量很大同时也没有必要(因为一部分特征就已经反应了脸部的大部分信息)。但同时,人为的(指主观的)对这些特征进行筛选也很可能会把很多有用的信息剔除掉了;这时PCA就派上用场了,通过PCA降维的方法就可以控制特征的多少了(通常取Score>85%的前N个主成份就够了,还视具体情况而定吧)。关于PCA降维的应用与理论,PCA算法学习_1(OpenCV中PCA实现人脸降维),讲的很清楚了。
2、特征分析、选择
常用PCA进行数据降维,但使用PCA进行特征选择的案例并不常见。而使用PCA、小波变换等方法可以做到将维数降低、以简化后续分类等过程的复杂度,但这些降维方法本身的计算量也不小,在一些应用场景中需要在线实时的进行数据处理时,在保障模型预测准确性的基础上,模型当然越简单消耗的资源越少越好。面对海量特征,其中每个特征对模型预测准确性的贡献是有所不同的,某个特征与PCA主成分方向夹角越小(可用余弦相似性衡量),该特征对PCA主成分的贡献就越大,新特征F与原特征矩阵X的关系可用X的特征向量A联系:
F=Af
三维情况下,新特征F与原特征f变换关系表示为:
则原特征fj对新特征F的贡献通过下式计算:
贡献度Conj的大小及衡量了原有的某个特征对所有新特征的重要程度。
若原特征维数巨大,在线分析的应用中对其进行PCA的降维操作也有一定的计算量。在模型构建之初,即可使用PCA方法,通过计算特征贡献度Con,选取贡献度大的一些特征来直接训练模型以及后续的分类预测工作。
以上是个人实践中的一些总结,欢迎批评指正~
PCA与特征选取的更多相关文章
- 特征选取1-from sklearn.feature_selection import SelectKBest
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 转 :scikit-learn的GBDT工具进行特征选取。
http://blog.csdn.net/w5310335/article/details/48972587 使用GBDT选取特征 2015-03-31 本文介绍如何使用scikit-learn的GB ...
- scikit-learn的GBDT工具进行特征选取。
http://blog.csdn.net/w5310335/article/details/48972587 使用GBDT选取特征 2015-03-31 本文介绍如何使用scikit-learn的GB ...
- [模式识别].(希腊)西奥多里蒂斯<第四版>笔记5之__特征选取
1,引言 有关模式识别的一个主要问题是维数灾难.我们将在第7章看到维数非常easy变得非常大. 减少维数的必要性有几方面的原因.计算复杂度是一个方面.还有一个有关分类器的泛化性能. 因此,本章的主要任 ...
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取VarianceThreshold模型
from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_Va ...
- 吴裕雄 python 机器学习——数据预处理包裹式特征选取模型
from sklearn.svm import LinearSVC from sklearn.datasets import load_iris from sklearn.feature_select ...
- 特征选取方法PCA与LDA
一.主成分分析(PCA)介绍 什么是主成分分析? 主成分分析是一种用于连续属性降维的方法,把多指标转化为少数几个综合指标. 它构造了原始属性的一个正交变换,将一组可能相关的变量转化为一组不相关的变 ...
- [译]使用scikit-learn进行机器学习(scikit-learn教程1)
原文地址:http://scikit-learn.org/stable/tutorial/basic/tutorial.html 翻译:Tacey Wong 概要: 该章节,我们将介绍贯穿scikit ...
随机推荐
- 迭代器&生成器
迭代器 迭代是Python最强大的功能之一,是访问集合元素的一种方式. 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退 ...
- scratch写的图灵机
大多数人对于scratch不感冒,因为觉得这是孩子玩的.的确,积木的方式不适合专业程序员写代码,然而别小看scratch,怎么说,它也是图灵完备的.而且,过程支持递归,虽然带不了返回值. 虽然计算速度 ...
- MySQL 字符串连接CONCAT()函数
MySQL字符串连接函数 使用方法:CONCAT(str1,str2,-) 返回结果为连接参数产生的字符串.如有任何一个参数为NULL ,则返回值为 NULL. 注意:如果所有参数均为非二进制字符串, ...
- Arrays的二分查找
二分查找也称为折半查找,是对有序元素查找的一种算法,在查找的过程中,不断的将搜索长度减半,因此效率不错.Java的JDK提供了二分法查找的算法,使用的方法是Arrays.binarySearch(). ...
- Nginx之(三)Nginx配置
一个简单的配置文件如下: #定义Nginx运行的用户及用户组 user userName userGroupName; #工作进程数目,根据硬件调整,通常等于CPU数量或者2倍于CPU worker_ ...
- NavigationView使用过程的问题解决
NavigationView是android support design库提供的侧滑面板控件,通常与support v4库里的DrawerLayout侧滑控件搭配使用.以下是使用过程中遇到的问题及解 ...
- linux系统性能监控--CPU利用率
在对系统的方法化分析中,首要且最基本的工具之一常常是对系统的 CPU利用率进行简单测量. Linux以及大多数基于 UNIX的操作系统都提供了一条命令来显示系统的平均负荷(loadaverage) . ...
- Bootstrap3 栅格系统-实例:从堆叠到水平排列
使用单一的一组 .col-md-* 栅格类,就可以创建一个基本的栅格系统,在手机和平板设备上一开始是堆叠在一起的(超小屏幕到小屏幕这一范围),在桌面(中等)屏幕设备上变为水平排列.所有"列( ...
- Android视频媒体相关,VideoView和开源框架vitamio
虽然Android已经内置了VideoView组件和MediaPlayer类来支持开发视频播放器,但支持格式.性能等各方面都十分有限,但是Vitamio的确强大到没朋友! Vitamio 是一款 An ...
- ELK搭建
ELK安装 elasticsearch安装 * 下载elasticsearch-5.0.0.tar.gz,并解压. 通过elasticsearch.yml可设置host和port. vim confi ...