machine learning 之 Neural Network 1
整理自Andrew Ng的machine learning课程week 4.
目录:
- 为什么要用神经网络
- 神经网络的模型表示 1
- 神经网络的模型表示 2
- 实例1
- 实例2
- 多分类问题
1、为什么要用神经网络
当我们有大量的features时:如$x_1, x_2,x_3.......x_{100}$
假设我们现在使用一个非线性的模型,多项式最高次为2次,那么对于非线性分类问题而言,如果使用逻辑回归的话:
$g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1x_2+\theta_4x_1^2x_2+........)$
大约有5000($\frac{n^2}{2}$)个特征,也就是说O(n2),那么当多项式的次数为3次时,结果更加的大,O(n3)
这样多的特征带来的后果是:1.过拟合的可能性增大 2.计算的耗费很大
举个更加极端的例子,在图像问题中,每一个像素就相当于一个特征,仅对于一个50*50(已经是非常小的图片了)的图像而言,如果是灰度图像,就有2500个特征了,RGB图像则有7500个特征,对于每个特征还有255个取值;

对于这样的一个图像而言,如果用二次特征的话,就有大概3百万个特征了,如果这时候还用逻辑回归的话,计算的耗费就相当的大了
这个时候我们就需要用到neural network了。
2、神经网络的模型表示1
神经网络的基本结构如下图所示:
$x_0, x_1,x_2,x_3$是输入单元,$x_0$又被称为bias unit,你可以把bias unit都设置为1;
$\theta$是权重(或者直接说参数),连接输入和输出的权重参数;
$h_\theta(x)$是输出的结果;
对于以下的网络结构,我们有以下定义和计算公式:

$a_i^{(j)}$:在第j层的第i个单元的activation(就是这个单元的值),中间层我们称之为hidden layers
$s_j$:第j层的单元数目
$\Theta^{(j)}$:权重矩阵,控制了从第j层到第j+1层的映射关系,$\Theta^{(j)}$的维度为$s_{j+1}*(s_j+1)$
对于$a^{(2)}$的计算公式为:
$a_1^{(2)}=g(\theta_{10}^{(1)}x_0+\theta_{11}^{(1)}x_1+\theta_{12}^{(1)}x_2+\theta_{13}^{(1)x_3})$
$a_2^{(2)}=g(\theta_{20}^{(1)}x_0+\theta_{21}^{(1)}x_1+\theta_{22}^{(1)}x_2+\theta_{23}^{(1)}x_3)$
$a_3^{(2)}=g(\theta_{30}^{(1)}x_0+\theta_{31}^{(1)}x_1+\theta_{32}^{(1)}x_2+\theta_{33}^{(1)}x_3)$
那么同理,
$h_\Theta(x)=a_1^{(3)}=g(\theta_{10}^{(2)}a_0^{(2)}+\theta_{11}^{(2)}a_1^{(2)}+\theta_{12}^{(2)}a_2^{(2)}+\theta_{13}^{(2)}a_3^{(2)})$
3、神经网络模型表示2
forward propagation: vectorized implementation
对以上的公式的向量化表示:
$z_1^{(2)}=\theta_{10}^{(1)}x_0+\theta_{11}^{(1)}x_1+\theta_{12}^{(1)}x_2+\theta_{13}^{(1)x_3}$
$a_1^{(2)}=g(z_1^{(2)})$
写成向量即为:
$ a^{(1)}=x= \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} $ $ z^{(2)}=\begin{bmatrix} z^{(2)}_1 \\ z^{(2)}_1 \\ z^{(2)}_1 \end{bmatrix} $ $\Theta^{(1)}= \begin{bmatrix} \theta^{(1)}_{10} & \theta^{(1)}_{11} & \theta^{(1)}_{12} & \theta^{(1)}_{13} \\ \theta^{(1)}_{20} & \theta^{(1)}_{21} & \theta^{(1)}_{22} & \theta^{(1)}_{23} \\ \theta^{(1)}_{30} & \theta^{(1)}_{31} & \theta^{(1)}_{32} & \theta^{(1)}_{33} \\ \end{bmatrix}$
因此:
$z^{(2)}=\Theta^{(1)}a^{(1)}$
$a^{(2)}=g(z^{(2)})$
加上$a^{(2)}_0=1$:
$z^{(3)}=\Theta^{(2)}a^{(2)}$
$a^{(3)}=h_\Theta(x)=g(z^{(3)})$
以上即为向量化的表达方式。
对于每个$a^{(j)}$都会学习到不同的特征
4、实例1
先来看一个分类问题,XOR/XNOR,对于$x_1,x_2 \in {0,1}$,当x1和x2不同(0,1或者1,0)时,y为1,相同时y为0;y=x1 xnor n2

对于一个简单的分类问题 AND:
可以用如下的神经网络结构得到正确的分类结果

同样的,对于OR,我们可以设计出以下的网络,也可以得到正确的结果

5、实例2
接着上面的例子,对于 NOT,以下网络结构可以进行分类:

我们回到示例中最初提到的问题:XNOR
当我们组合上述简单例子(AND、OR、NOT)时,就可以得到解决XNOR问题的正确的网络结构:

6、多分类问题
在neural network中的多分类问题的解决,也是用的one vs all的思想,在二分类问题中,我们是输出不是0就是1,而在多分类问题中,输出的结果是一个one hot向量,$h_\Theta(x) \in R^k$,k代表类别数目
比如说对于一个4类问题,输出可能为:
类别1:$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, 类别2:$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, 类别3:$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ , 等等
你不可以把$h_\Theta(x)$输出为1,2,3,4
machine learning 之 Neural Network 1的更多相关文章
- Python -- machine learning, neural network -- PyBrain 机器学习 神经网络
I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machi ...
- machine learning 之 Neural Network 2
整理自Andrew Ng的machine learning 课程 week5. 目录: Neural network and classification Cost function Backprop ...
- machine learning 之 Neural Network 3
整理自Andrew Ng的machine learning课程week6. 目录: Advice for applying machine learning (Decide what to do ne ...
- Machine Learning:Neural Network---Representation
Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...
- 《MATLAB Deep Learning:With Machine Learning,Neural Networks and Artificial Intelligence》选记
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as ...
- Deep learning与Neural Network
深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的 ...
随机推荐
- leetcode算法:Reshape the Matrix
In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new o ...
- linux ubunt 安装软件的前期准备——更新源的更换
如果是高手,请翻到页面最下方,更换更新源的总结,直接操作即可 可能会优点啰嗦,但是认真看,一定能解决问题~~希望对大家有帮助~ 最近在熟悉linux环境,自己安装了一个ubuntu虚拟机. 很多朋友问 ...
- 翻译:JVM虚拟机规范1.7中的运行时常量池部分(一)
原文链接: https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.4 Java Virtual Machine i ...
- WebApi 基于token的多平台身份认证架构设计
1 概述 在存在账号体系的信息系统中,对身份的鉴定是非常重要的事情. 随着移动互联网时代到来,客户端的类型越来越多, 逐渐出现了 一个服务器,N个客户端的格局 . 不同的客户端产生了不同的用户使用 ...
- POJ-2965 The Pilots Brothers' refrigerator---思维题
题目链接: https://vjudge.net/problem/POJ-2965 题目大意: 一个冰箱上有4*4共16个开关,改变任意一个开关的状态(即开变成关,关变成开)时,此开关的同一行.同一列 ...
- EFCore CodeFirst 连接MySql
一.工具及环境 Visual Studio 2017 15.4.3 MySql Navicat for MySQL 二.Entity Framwork Core 2.0 MySql Code Firs ...
- eclipse下如何使用Hibernate反转工程生与数据库对应的实体类和映射文件(以MySQL为例)
首先需要为eclipse添加对Hibernate的支持(也就是下载的Hibernate中的jar包),下载方法另查,这里不多做阐述. 想要使用反转工程,首先要下载Hibernate反转工程的插件Jbo ...
- SQL*Plus工具使用 sqlplus / as sysdba登录
A: 正常情况下 [oracle@hukou admin]$ sqlplus / as sysdba Copyright (c) 1982, 2013, Oracle. All rights res ...
- Spring Cloud学习笔记-009
API网关服务:Spring Cloud Zuul API网关是一个更为智能的应用服务器,它的定义类似于面向对象设计模式中的Façade模式,它的存在就像是整个微服务架构系统的门面一样,所有的外部客户 ...
- NLog日志管理工具(转)
一.通过VS建立一个控制台应用程序. 二.打开程序包管理器控制台.具体操作如下:[工具]>[库程序包管理器]>[程序包管理器控制台]. 三.在程序包管理器控制台下输入命令:Install- ...