整理自Andrew Ng的machine learning课程week 4.

目录:

  • 为什么要用神经网络
  • 神经网络的模型表示 1
  • 神经网络的模型表示 2
  • 实例1
  • 实例2
  • 多分类问题

1、为什么要用神经网络

当我们有大量的features时:如$x_1, x_2,x_3.......x_{100}$

假设我们现在使用一个非线性的模型,多项式最高次为2次,那么对于非线性分类问题而言,如果使用逻辑回归的话:

$g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1x_2+\theta_4x_1^2x_2+........)$

大约有5000($\frac{n^2}{2}$)个特征,也就是说O(n2),那么当多项式的次数为3次时,结果更加的大,O(n3)

这样多的特征带来的后果是:1.过拟合的可能性增大     2.计算的耗费很大

举个更加极端的例子,在图像问题中,每一个像素就相当于一个特征,仅对于一个50*50(已经是非常小的图片了)的图像而言,如果是灰度图像,就有2500个特征了,RGB图像则有7500个特征,对于每个特征还有255个取值;

对于这样的一个图像而言,如果用二次特征的话,就有大概3百万个特征了,如果这时候还用逻辑回归的话,计算的耗费就相当的大了

这个时候我们就需要用到neural network了。

2、神经网络的模型表示1

神经网络的基本结构如下图所示:

$x_0, x_1,x_2,x_3$是输入单元,$x_0$又被称为bias unit,你可以把bias unit都设置为1;

$\theta$是权重(或者直接说参数),连接输入和输出的权重参数;

$h_\theta(x)$是输出的结果;

对于以下的网络结构,我们有以下定义和计算公式:

$a_i^{(j)}$:在第j层的第i个单元的activation(就是这个单元的值),中间层我们称之为hidden layers

$s_j$:第j层的单元数目

$\Theta^{(j)}$:权重矩阵,控制了从第j层到第j+1层的映射关系,$\Theta^{(j)}$的维度为$s_{j+1}*(s_j+1)$

对于$a^{(2)}$的计算公式为:

$a_1^{(2)}=g(\theta_{10}^{(1)}x_0+\theta_{11}^{(1)}x_1+\theta_{12}^{(1)}x_2+\theta_{13}^{(1)x_3})$

$a_2^{(2)}=g(\theta_{20}^{(1)}x_0+\theta_{21}^{(1)}x_1+\theta_{22}^{(1)}x_2+\theta_{23}^{(1)}x_3)$

$a_3^{(2)}=g(\theta_{30}^{(1)}x_0+\theta_{31}^{(1)}x_1+\theta_{32}^{(1)}x_2+\theta_{33}^{(1)}x_3)$

那么同理,

$h_\Theta(x)=a_1^{(3)}=g(\theta_{10}^{(2)}a_0^{(2)}+\theta_{11}^{(2)}a_1^{(2)}+\theta_{12}^{(2)}a_2^{(2)}+\theta_{13}^{(2)}a_3^{(2)})$

3、神经网络模型表示2

forward propagation: vectorized implementation

对以上的公式的向量化表示:

$z_1^{(2)}=\theta_{10}^{(1)}x_0+\theta_{11}^{(1)}x_1+\theta_{12}^{(1)}x_2+\theta_{13}^{(1)x_3}$

$a_1^{(2)}=g(z_1^{(2)})$

写成向量即为:

$ a^{(1)}=x= \begin{bmatrix} x_0 \\  x_1 \\ x_2 \\ x_3  \end{bmatrix} $          $ z^{(2)}=\begin{bmatrix} z^{(2)}_1 \\ z^{(2)}_1 \\ z^{(2)}_1 \end{bmatrix} $          $\Theta^{(1)}= \begin{bmatrix} \theta^{(1)}_{10} & \theta^{(1)}_{11} & \theta^{(1)}_{12} & \theta^{(1)}_{13} \\ \theta^{(1)}_{20} & \theta^{(1)}_{21} & \theta^{(1)}_{22} & \theta^{(1)}_{23} \\ \theta^{(1)}_{30} & \theta^{(1)}_{31} & \theta^{(1)}_{32} & \theta^{(1)}_{33} \\ \end{bmatrix}$

因此:

$z^{(2)}=\Theta^{(1)}a^{(1)}$

$a^{(2)}=g(z^{(2)})$

加上$a^{(2)}_0=1$:

$z^{(3)}=\Theta^{(2)}a^{(2)}$

$a^{(3)}=h_\Theta(x)=g(z^{(3)})$

以上即为向量化的表达方式。

对于每个$a^{(j)}$都会学习到不同的特征

4、实例1

先来看一个分类问题,XOR/XNOR,对于$x_1,x_2 \in {0,1}$,当x1和x2不同(0,1或者1,0)时,y为1,相同时y为0;y=x1 xnor n2

对于一个简单的分类问题 AND:

可以用如下的神经网络结构得到正确的分类结果

同样的,对于OR,我们可以设计出以下的网络,也可以得到正确的结果

5、实例2

接着上面的例子,对于 NOT,以下网络结构可以进行分类:

我们回到示例中最初提到的问题:XNOR

当我们组合上述简单例子(AND、OR、NOT)时,就可以得到解决XNOR问题的正确的网络结构:

6、多分类问题

在neural network中的多分类问题的解决,也是用的one vs all的思想,在二分类问题中,我们是输出不是0就是1,而在多分类问题中,输出的结果是一个one hot向量,$h_\Theta(x) \in R^k$,k代表类别数目

比如说对于一个4类问题,输出可能为:

类别1:$\begin{bmatrix}  0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, 类别2:$\begin{bmatrix}  0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, 类别3:$\begin{bmatrix}  0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ , 等等

你不可以把$h_\Theta(x)$输出为1,2,3,4

machine learning 之 Neural Network 1的更多相关文章

  1. Python -- machine learning, neural network -- PyBrain 机器学习 神经网络

    I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machi ...

  2. machine learning 之 Neural Network 2

    整理自Andrew Ng的machine learning 课程 week5. 目录: Neural network and classification Cost function Backprop ...

  3. machine learning 之 Neural Network 3

    整理自Andrew Ng的machine learning课程week6. 目录: Advice for applying machine learning (Decide what to do ne ...

  4. Machine Learning:Neural Network---Representation

    Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟 ...

  5. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  6. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...

  7. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...

  8. 《MATLAB Deep Learning:With Machine Learning,Neural Networks and Artificial Intelligence》选记

    一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as ...

  9. Deep learning与Neural Network

    深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的 ...

随机推荐

  1. intelj idea 创建聚合项目(典型web项目,包括子项目util、dao、service)

    需求:第三方提供了http api接口,我们需要将其数据全部取回来,存放到本地Mysql数据库. 开发工具是intelj idea,准备基于maven创建聚合项目,util作为工具包,单独作为一个工程 ...

  2. 错误解决:HibernateSystemException-HHH000142: Javassist Enhancement failed

     今天做项目报了一个错误 错误的原因是: 有级联查询的时候,一对多,多对一配置时要考虑默认延迟加载的问题,需要把延迟加载关闭. 然后就能正确查询出结果了  补充知识: 延迟加载表现在:比如:我们要查询 ...

  3. hive:默认允许动态分区个数为100,超出抛出异常:

    在创建好一个分区表后,执行动态分区插入数据,抛出了错误: Caused by: org.apache.hadoop.hive.ql.metadata.HiveFatalException: [Erro ...

  4. HIve:beeline终端上在输错hive语句时,无论 Backspace还是delete 都删除不掉错误的语句,没有办法退格

    通过SecureCRT工具连上linux后,通过beeline连接上hive后,在输错hive语句时,无论 Backspace还是delete 都删除不掉错误的语句,没有办法退格. 解决方案: 第一步 ...

  5. Struts(十五):主题

    Theme主题是配置的struts-core.jar下的com.apache.struts2包下的default.properties中(默认配置为:xhtml) ### Standard UI th ...

  6. Spring学习之AOP与事务

      一.概述 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续, ...

  7. js实现继承的5种方式

    js是门灵活的语言,实现一种功能往往有多种做法,ECMAScript没有明确的继承机制,而是通过模仿实现的,根据js语言的本身的特性,js实现继承有以下通用的几种方式1.使用对象冒充实现继承(该种实现 ...

  8. jmc远程连接windows环境tomcat

    新人报道,先发个小贴赚点人气,本人目前还是小菜鸟,想要飞却怎么也飞不高,哈哈,转到正题,最近发现这个JMC挺好用的,而且也不用像Jprofile需要破解,本地连接挺方便的, 但配置服务器确实挺坑的,按 ...

  9. JS获取URL传的值与解决获取URL中的中文参数出现乱码

    大家好,我是小C, 我们在项目开发中有时需要页面与页面之间的传值,那我们可能会选择用地址栏传递参数,那另外的那个页面就需要获取地址栏里的参数,今天分享下关于地址栏怎么传递参数与获取中文参数出现乱码的解 ...

  10. LruCache的缓存策略

    一.Android中的缓存策略 一般来说,缓存策略主要包含缓存的添加.获取和删除这三类操作.如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大 ...