【pytorch】pytorch-LSTM
pytorch-LSTM()
torch.nn包下实现了LSTM函数,实现LSTM层。多个LSTMcell组合起来是LSTM。
LSTM自动实现了前向传播,不需要自己对序列进行迭代。
LSTM的用到的参数如下:创建LSTM指定如下参数,至少指定前三个参数
input_size:
输入特征维数
hidden_size:
隐层状态的维数
num_layers:
RNN层的个数,在图中竖向的是层数,横向的是seq_len
bias:
隐层状态是否带bias,默认为true
batch_first:
是否输入输出的第一维为batch_size,因为pytorch中batch_size维度默认是第二维度,故此选项可以将 batch_size放在第一维度。如input是(4,1,5),中间的1是batch_size,指定batch_first=True后就是(1,4,5)
dropout:
是否在除最后一个RNN层外的RNN层后面加dropout层
bidirectional:
是否是双向RNN,默认为false,若为true,则num_directions=2,否则为1
为了统一,以后都batch_first=True
LSTM的输入为:LSTM(input,(h0,co))
其中,指定batch_first=True后,input就是(batch_size,seq_len,input_size)
(h0,c0)是初始的隐藏层,因为每个LSTM单元其实需要两个隐藏层的。记hidden=(h0,c0)
其中,h0的维度是(num_layers*num_directions, batch_size, hidden_size)
c0维度同h0。注意,即使batch_first=True,这里h0的维度依然是batch_size在第二维度
LSTM的输出为:out,(hn,cn)
其中,out是每一个时间步的最后一个隐藏层h的输出,假如有5个时间步(即seq_len=5),则有5个对应的输出,out的维度是:(batch_size,seq_len,hidden_size)
而hidden=(hn,cn),他自己实现了时间步的迭代,每次迭代需要使用上一步的输出和hidden层,最后一步hidden=(hn,cn)记录了最后一各时间步的隐藏层输出,有几层对应几个输出,如果这个是RNN-encoder,则hn,cn就是中间的编码向量。hn的维度是(num_layers*num_directions,batch_size,hidden_size),cn同。
应用LSTM
创建一LSTM:
lstm = torch.nn.LSTM(input_size,hidden_size,num_layers,batch_first=True)
forward使用LSTM层:
out,hidden = lstm(input,hidden)
其中,hidden=(h0,c0)是个tuple
最终得到out,hidden
举例:
import torch
# 实现一个num_layers层的LSTM-RNN
class RNN(torch.nn.Module):
def __init__(self,input_size, hidden_size, num_layers):
super(RNN,self).__init__()
self.input_size = input_size
self.hidden_size=hidden_size
self.num_layers=num_layers
self.lstm = torch.nn.LSTM(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers,batch_first=True)
def forward(self,input):
# input应该为(batch_size,seq_len,input_szie)
self.hidden = self.initHidden(input.size(0))
out,self.hidden = lstm(input,self.hidden)
return out,self.hidden
def initHidden(self,batch_size):
if self.lstm.bidirectional:
return (torch.rand(self.num_layers*2,batch_size,self.hidden_size),torch.rand(self.num_layers*2,batch_size,self.hidden_size))
else:
return (torch.rand(self.num_layers,batch_size,self.hidden_size),torch.rand(self.num_layers,batch_size,self.hidden_size))
input_size = 12
hidden_size = 10
num_layers = 3
batch_size = 2
model = RNN(input_size,hidden_size,num_layers)
# input (seq_len, batch, input_size) 包含特征的输入序列,如果设置了batch_first,则batch为第一维
input = torch.rand(2,4,12)
model(input)
【pytorch】pytorch-LSTM的更多相关文章
- 【翻译】理解 LSTM 网络
目录 理解 LSTM 网络 递归神经网络 长期依赖性问题 LSTM 网络 LSTM 的核心想法 逐步解析 LSTM 的流程 长短期记忆的变种 结论 鸣谢 本文翻译自 Christopher Olah ...
- 【翻译】理解 LSTM 及其图示
目录 理解 LSTM 及其图示 本文翻译自 Shi Yan 的博文 Understanding LSTM and its diagrams,原文阐释了作者对 Christopher Olah 博文 U ...
- 【转载】PyTorch系列 (二):pytorch数据读取
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorc ...
- 【转载】Pytorch tutorial 之Datar Loading and Processing
前言 上文介绍了数据读取.数据转换.批量处理等等.了解到在PyTorch中,数据加载主要有两种方式: 1.自定义的数据集对象.数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Datase ...
- 【转载】 pytorch笔记:06)requires_grad和volatile
原文地址: https://blog.csdn.net/jiangpeng59/article/details/80667335 作者:PJ-Javis 来源:CSDN --------------- ...
- 【转载】 Pytorch 细节记录
原文地址: https://www.cnblogs.com/king-lps/p/8570021.html ---------------------------------------------- ...
- 【转载】 pytorch之添加BN
原文地址: https://blog.csdn.net/weixin_40123108/article/details/83509838 ------------------------------- ...
- 【转载】 pytorch自定义网络结构不进行参数初始化会怎样?
原文地址: https://blog.csdn.net/u011668104/article/details/81670544 ------------------------------------ ...
- 【转载】 Pytorch中的学习率调整lr_scheduler,ReduceLROnPlateau
原文地址: https://blog.csdn.net/happyday_d/article/details/85267561 ------------------------------------ ...
- 【转载】 PyTorch学习之六个学习率调整策略
原文地址: https://blog.csdn.net/shanglianlm/article/details/85143614 ----------------------------------- ...
随机推荐
- #3 Python面向对象(二)
前言 上一节主要记录面向对象编程的思想以及Python类的简单创建,这节继续深入类中变量的相关知识,Here we go! Python中类的各种变量 1.1 类变量 类变量定义:在类中,在函数体(方 ...
- Jquery简单学习
Jquery是一个JavaScript的函数库,Jquery是一个写得少但做的多的轻量级JavaScript库 Jquery用美元$定义. Jquery的action执行对元素的操作 文档就绪函数: ...
- Java 处理 multipart/mixed 请求
一.multipart/mixed 请求 multipart/mixed 和 multipart/form-date 都是多文件上传的格式.区别在于,multipart/form-data 是一种 ...
- ArcPy 创建图层空间索引
使用Python脚本进行图层的空间索引的创建. 附上Python代码: # -*- coding: utf-8 -*- # nightroad import sys import arcpy relo ...
- ASP.Net Core开发(踩坑)指南
ASP.NET与ASP.NET Core很类似,但它们之间存在一些细微区别以及ASP.NET Core中新增特性的使用方法,在此之前也写过一篇简单的对比文章ASP.NET MVC应用迁移到ASP.NE ...
- SQL学习笔记---非select操作
非select命令 数据库 1.创建 //create database 库名 2.删除 //drop database 库名,... 2.重命名//exec sp_renamedb ...
- JS直接调用C#后台方法(ajax调用)
1. 先手动引用DLL或者通过NuGet查找引用,这里提供一个AjaxPro.2.dll的下载: 2. 之后的的过程不想写了,网上都大同小异的,直接参考以前大佬写的: AjaxPro2完整入门教程 总 ...
- lua_local变量在new时不会被清空
前言 我的运行环境 Lua5.3 按照我们以往的Java或C#编程经验,如果一个class被new,那么这个class中所有成员变量的值都是默值或是构造函数中赋的值,但在Lua中的local变量却并不 ...
- LeetCode算法题-Flood Fill(Java实现)
这是悦乐书的第306次更新,第325篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第173题(顺位题号是733).图像由二维整数数组表示,每个整数表示图像的像素值(从0到 ...
- kerberos环境下spark消费kafka写入到Hbase
一.准备环境: 创建Kafka Topic和HBase表 1. 在kerberos环境下创建Kafka Topic 1.1 因为kafka默认使用的协议为PLAINTEXT,在kerberos环境下需 ...