【pytorch】pytorch-LSTM
pytorch-LSTM()
torch.nn包下实现了LSTM函数,实现LSTM层。多个LSTMcell组合起来是LSTM。
LSTM自动实现了前向传播,不需要自己对序列进行迭代。
LSTM的用到的参数如下:创建LSTM指定如下参数,至少指定前三个参数
input_size:
输入特征维数
hidden_size:
隐层状态的维数
num_layers:
RNN层的个数,在图中竖向的是层数,横向的是seq_len
bias:
隐层状态是否带bias,默认为true
batch_first:
是否输入输出的第一维为batch_size,因为pytorch中batch_size维度默认是第二维度,故此选项可以将 batch_size放在第一维度。如input是(4,1,5),中间的1是batch_size,指定batch_first=True后就是(1,4,5)
dropout:
是否在除最后一个RNN层外的RNN层后面加dropout层
bidirectional:
是否是双向RNN,默认为false,若为true,则num_directions=2,否则为1
为了统一,以后都batch_first=True
LSTM的输入为:LSTM(input,(h0,co))
其中,指定batch_first=True
后,input就是(batch_size,seq_len,input_size)
(h0,c0)是初始的隐藏层,因为每个LSTM单元其实需要两个隐藏层的。记hidden=(h0,c0)
其中,h0的维度是(num_layers*num_directions, batch_size, hidden_size)
c0维度同h0。注意,即使batch_first=True
,这里h0的维度依然是batch_size在第二维度
LSTM的输出为:out,(hn,cn)
其中,out是每一个时间步的最后一个隐藏层h的输出,假如有5个时间步(即seq_len=5),则有5个对应的输出,out的维度是:(batch_size,seq_len,hidden_size)
而hidden=(hn,cn)
,他自己实现了时间步的迭代,每次迭代需要使用上一步的输出和hidden层,最后一步hidden=(hn,cn)
记录了最后一各时间步的隐藏层输出,有几层对应几个输出,如果这个是RNN-encoder,则hn,cn就是中间的编码向量。hn的维度是(num_layers*num_directions,batch_size,hidden_size),cn同。
应用LSTM
创建一LSTM:
lstm = torch.nn.LSTM(input_size,hidden_size,num_layers,batch_first=True)
forward使用LSTM层:
out,hidden = lstm(input,hidden)
其中,hidden=(h0,c0)
是个tuple
最终得到out,hidden
举例:
import torch
# 实现一个num_layers层的LSTM-RNN
class RNN(torch.nn.Module):
def __init__(self,input_size, hidden_size, num_layers):
super(RNN,self).__init__()
self.input_size = input_size
self.hidden_size=hidden_size
self.num_layers=num_layers
self.lstm = torch.nn.LSTM(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers,batch_first=True)
def forward(self,input):
# input应该为(batch_size,seq_len,input_szie)
self.hidden = self.initHidden(input.size(0))
out,self.hidden = lstm(input,self.hidden)
return out,self.hidden
def initHidden(self,batch_size):
if self.lstm.bidirectional:
return (torch.rand(self.num_layers*2,batch_size,self.hidden_size),torch.rand(self.num_layers*2,batch_size,self.hidden_size))
else:
return (torch.rand(self.num_layers,batch_size,self.hidden_size),torch.rand(self.num_layers,batch_size,self.hidden_size))
input_size = 12
hidden_size = 10
num_layers = 3
batch_size = 2
model = RNN(input_size,hidden_size,num_layers)
# input (seq_len, batch, input_size) 包含特征的输入序列,如果设置了batch_first,则batch为第一维
input = torch.rand(2,4,12)
model(input)
【pytorch】pytorch-LSTM的更多相关文章
- 【翻译】理解 LSTM 网络
目录 理解 LSTM 网络 递归神经网络 长期依赖性问题 LSTM 网络 LSTM 的核心想法 逐步解析 LSTM 的流程 长短期记忆的变种 结论 鸣谢 本文翻译自 Christopher Olah ...
- 【翻译】理解 LSTM 及其图示
目录 理解 LSTM 及其图示 本文翻译自 Shi Yan 的博文 Understanding LSTM and its diagrams,原文阐释了作者对 Christopher Olah 博文 U ...
- 【转载】PyTorch系列 (二):pytorch数据读取
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorc ...
- 【转载】Pytorch tutorial 之Datar Loading and Processing
前言 上文介绍了数据读取.数据转换.批量处理等等.了解到在PyTorch中,数据加载主要有两种方式: 1.自定义的数据集对象.数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Datase ...
- 【转载】 pytorch笔记:06)requires_grad和volatile
原文地址: https://blog.csdn.net/jiangpeng59/article/details/80667335 作者:PJ-Javis 来源:CSDN --------------- ...
- 【转载】 Pytorch 细节记录
原文地址: https://www.cnblogs.com/king-lps/p/8570021.html ---------------------------------------------- ...
- 【转载】 pytorch之添加BN
原文地址: https://blog.csdn.net/weixin_40123108/article/details/83509838 ------------------------------- ...
- 【转载】 pytorch自定义网络结构不进行参数初始化会怎样?
原文地址: https://blog.csdn.net/u011668104/article/details/81670544 ------------------------------------ ...
- 【转载】 Pytorch中的学习率调整lr_scheduler,ReduceLROnPlateau
原文地址: https://blog.csdn.net/happyday_d/article/details/85267561 ------------------------------------ ...
- 【转载】 PyTorch学习之六个学习率调整策略
原文地址: https://blog.csdn.net/shanglianlm/article/details/85143614 ----------------------------------- ...
随机推荐
- 数据结构系列(2)之 AVL 树
本文将主要讲解平衡二叉树中的 AVL 树,其中将重点讲解二叉树的重平衡方法,即左旋和右旋,以及 3+4 重构:这些方法都是后面要讲的 B 树,红黑树等 BBST 的重要基础:此外在看本文之前最好先看一 ...
- GoLang structTag说明
在处理json格式字符串的时候,经常会看到声明struct结构的时候,属性的右侧还有小米点括起来的内容.形如 type User struct { UserId int `json:"use ...
- Keepalived 的使用
1.什么是keepalived Keepalived的作用是检测web服务器的状态,如果有一台web服务器死机,或工作出现故障,Keepalived将检测到,并将有故障的web服务器从系统中剔除,当w ...
- Web后端 JAVA学习之路
1.Java分类 Java按应用来分,可以分为J2ME(手机版),J2SE(标准版),J2EE(企业版)三部分. ・J2ME:已经被安卓开发取代. ・J2SE:Java的核心类,其中包括桌面应用,但一 ...
- 开源GIS知识
---恢复内容开始--- 2.1.3组件层 数据库组件层按照功能可分为两类:数据管理组件和分析组件. 2.1.3.1数据管理组件 (1)GDAL GDAL(http://www.gdal.org/)是 ...
- Android studio怎么使用自定义的framework而避免冲突报错和点不进去报红。
文件:xx\project_abc\video\build.gradle保证可以运行到自定义的framework而不报错,可能因为project和module名字相同所以导致下面的路径是绝对路径,其他 ...
- datatable动态列处理,重绘表格(敲黑板,划重点!!!我肝了一天半才彻底弄懂这个东西,TAT)
datatable动态列处理,重绘表格 前言:至于动态列的绘画,我前面博客已经写过了,就是动态列的配置问题,不懂的去我博客看下,今天要写的呢,就是你已经写了一个动态列在datatable,现在你想重新 ...
- [20190419]shared latch spin count 2.txt
[20190419]shared latch spin count 2.txt --//上午测试shared latch XX模式的情况,链接:http://blog.itpub.net/267265 ...
- sql 视图学习
视图语句 在 SQL 中,视图是基于 SQL 语句的结果集的可视化的表. 视图包含行和列,就像一个真实的表.视图中的字段就是来自一个或多个数据库中的真实的表中的字段. 您可以向视图添加 SQL 函数. ...
- vtop工具使用分析
vtop工具可以为esxtop提供图形界面,并且可以显示实时统计数据,对于我们监控esxi主机的需求匹配度很高,同时,相对于vcenter中的数据统计选项实时性更高,操作简便,可作为工作使用 为便于我 ...