【bzoj 3306】树
Description
给定一棵大小为 n 的有根点权树,支持以下操作:
• 换根
• 修改点权
• 查询子树最小值
Input
第一行两个整数 n, Q ,分别表示树的大小和操作数。
接下来n行,每行两个整数f,v,第i+1行的两个数表示点i的父亲和点i的权。保证f < i。如 果f = 0,那么i为根。输入数据保证只有i = 1时,f = 0。
接下来 m 行,为以下格式中的一种:
• V x y表示把点x的权改为y
• E x 表示把有根树的根改为点 x
• Q x 表示查询点 x 的子树最小值
Output
对于每个 Q ,输出子树最小值。
Sample Input
0 1
1 2
1 3
Q 1
V 1 6
Q 1
V 2 5
Q 1
V 3 4
Q 1
Sample Output
1
2
3
4
HINT
对于 100% 的数据:n, Q ≤ 10^5。
题解:
蛮裸的一道题(但我线段树打错,一路狂wa……)
跑dfs序,用线段树维护dfs序区间最值。对于x与root的关系:
1.x==root ,全局最小
2.x为root祖先节点,找到x的某个包含root的儿子,查询除去这个儿子以为的全局最值
3.其他情况下,直接查询x子树最值。
代码:
#include<cstdio>
inline int min(int a,int b){return a<b?a:b;}
const int N=(int )1e5+;
inline int read(){
int s=,k=;char ch=getchar();
while(ch<''||ch>'') k=ch=='-'?-:k,ch=getchar();
while(ch>&&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
}
int n,Q;
struct edges{
int v;edges *last;
}edge[N],*head[N];int cnt;
inline void push(int u,int v){
edge[++cnt]=(edges){v,head[u]};head[u]=edge+cnt;
}
struct Tree{
int val;Tree *son[];
Tree(){
son[]=son[]=NULL;
}
}tree[N<<],*root;
int val[N];
int rt;
int f[][N],deep[N];
int l[N],r[N],re[N];
int num;
inline void dfs(int x){
l[x]=++num;
re[num]=x;
for(int i=;(<<i)<=deep[x];i++)
f[i][x]=f[i-][f[i-][x]];
for(edges *i=head[x];i;i=i->last){
deep[i->v]=deep[x]+;
f[][i->v]=x;
dfs(i->v);
}
r[x]=num;
}
inline int LCA(int x,int y){
if(deep[x]<deep[y]) x^=y^=x^=y;
int t=deep[x]-deep[y];
for(int i=;t;i++) if(t&(<<i)){
t^=(<<i);
x=f[i][x];
}
if(x==y) return x;
for(int i=;i>=;i--){
if(f[i][x]!=f[i][y])
x=f[i][x],y=f[i][y];
}return f[][x];
}
inline void build(Tree *&u,int l,int r){
u=tree+cnt;
cnt++;
if(l==r){
u->val=val[re[l]];return ;
}
int mid=l+r>>;
build(u->son[],l,mid);
build(u->son[],mid+,r);
u->val=min(u->son[]->val,u->son[]->val);
//printf("l=%d r=%d val=%d son[0]=%d son[1]=%d\n",l,r,u->val,u->son[0]->val,u->son[1]->val);
} inline void add(Tree *u,int l,int r,int x,int w){
if(l==r){
u->val=w;return ;
}
int mid=l+r>>;
if(x>mid) add(u->son[],mid+,r,x,w);
else add(u->son[],l,mid,x,w);
u->val=min(u->son[]->val,u->son[]->val);
} inline int query(Tree *u,int l,int r,int x,int y){
if(x>y) return 0x7fffffff;
if(x<=l&&r<=y){
return u->val;
}
int mid=l+r>>;
if(x>mid) return query(u->son[],mid+,r,x,y);
else if(y<=mid) return query(u->son[],l,mid,x,y);
return min(query(u->son[],l,mid,x,y),query(u->son[],mid+,r,x,y));
}
int main(){
n=read(),Q=read();
for(int i=;i<=n;i++){
int x=read();
if(x==) rt=i;
val[i]=read();push(x,i);
}
dfs(rt);
cnt=;
build(root,,n);
char op[];
while(Q--){
scanf("%s",op);
if(op[]=='V'){
int x=read(),y=read();
add(root,,n,l[x],y);
}else if(op[]=='E'){
int x=read();
rt=x;
}else{
int x=read();
if(rt==x){
printf("%d\n",root->val);
continue;
}
if(l[x]<=l[rt]&&r[x]>=r[rt]){
int y=rt;
int t=deep[rt]-deep[x]-;
for(int i=;t;i++)if(t&(<<i)){
t^=<<i;
y=f[i][y];
}
printf("%d\n",min(query(root,,n,,l[y]-),query(root,,n,r[y]+,n)));
}else{
printf("%d\n",query(root,,n,l[x],r[x]));
}
}
}
}
/*
3 7
0 1
1 2
1 3
Q 1
V 1 6
Q 1
V 2 5
Q 1
V 3 4
Q 1
*/
【bzoj 3306】树的更多相关文章
- BZOJ 3306 树
dfs序建线段树+分类讨论+写的有点长. #include<iostream> #include<cstdio> #include<cstring> #includ ...
- BZOJ 3306: 树 LCT + set 维护子树信息
可以作为 LCT 维护子树信息的模板,写的还是比较优美的. 本地可过,bzoj 时限太紧,一直 TLE #include<bits/stdc++.h> #define setIO(s) f ...
- bzoj 3306
以1号节点为根,弄出DFS序,我们发现,对于一个询问:(rt,u),以rt为根,u节点的子树中的最小点权,我们可以根据rt,u,1这三个节点在同一条路径上的相对关系来把它转化为以1为根的在DFS序上的 ...
- bzoj 3196 树套树模板
然而我还是在继续刷水题... 终于解开了区间第k大的心结... 比较裸的线段树套平衡树,比较不好想的是求区间第k大时需要二分一下答案,然后问题就转化为了第一个操作.复杂度nlog3n.跑的比较慢... ...
- BZOJ 1969 树链剖分+Tarjan缩点
发现自己Tarjan的板子有错误.发现可以用Map直接删去边,Get. 听说std是双连通.LCA.并查集.离线思想.用BIT维护dfs序和并查集维护LCA的动态缩点的好题 #include < ...
- BZOJ 2286 树链剖分+DFS序+虚树+树形DP
第一次学习虚树,就是把无关的点去掉.S里维护一条链即可. #include <iostream> #include <cstring> #include <cstdio& ...
- BZOJ 4326 树链剖分+二分+差分+记忆化
去年NOIP的时候我还不会树链剖分! 还是被UOJ 的数据卡了一组. 差分的思想还是很神啊! #include <iostream> #include <cstring> #i ...
- BZOJ 3110 树套树 && 永久化标记
感觉树套树是个非常高深的数据结构.从来没写过 #include <iostream> #include <cstdio> #include <algorithm> ...
- BZOJ 2282 & 树的直径
SDOI2011的Dayx第2题 题意: 在树中找到一条权值和不超过S的链(为什么是链呢,因为题目中提到“使得路径的两端都是城市”,如果不是链那不就不止两端了吗——怎么这么机智的感觉...),使得不在 ...
随机推荐
- OpenNMS安装手册
一. 系统需求Windows Server 2008 R2 SP1 64位JDK 8 update 5 for Windows 64位PostgreSQL 9.3.5 for Windows 64位O ...
- iOS开发常用第三方库
UI 动画 网络相关 Model 其他 数据库 缓存处理 PDF 图像浏览及处理 摄像照相视频音频处理 响应式框架 消息相关 版本新API的Demo 代码安全与密码 测试及调试 AppleWatch ...
- 【转载】解决nginx负载均衡的session共享问题
https://blog.csdn.net/u012081441/article/details/71787164 之前有写过ubuntu环境下搭建nginx环境,今天来谈一下nginx sessio ...
- SpringBoot整合ElasticSearch实现多版本的兼容
前言 在上一篇学习SpringBoot中,整合了Mybatis.Druid和PageHelper并实现了多数据源的操作.本篇主要是介绍和使用目前最火的搜索引擎ElastiSearch,并和Spring ...
- Mybatis 系列5
上篇系列4中 为大家介绍了mybatis中别名的使用,以及其源码.本篇将为大家介绍TypeHandler, 并简单分析其源码. Mybatis中的TypeHandler是什么? 无论是 MyBatis ...
- Fiddler抓包使用教程-Android应用抓包
转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/74439165 本文出自[赵彦军的博客] Fiddler 也可以支持对手机应用进行 ...
- RocketMQ源码 — 九、 RocketMQ延时消息
上一节消息重试里面提到了重试的消息可以被延时消费,其实除此之外,用户发送的消息也可以指定延时时间(更准确的说是延时等级),然后在指定延时时间之后投递消息,然后被consumer消费.阿里云的ons还支 ...
- 学习CountDownLatch
对比 使用CyclicBarrier 上次用Barrier方式实现了线程等待一组完成,这次用CountDownLatch来实现 我的理解CountDownLatch 采用的方式是计数器方式,每执行完一 ...
- mysql-索引、关系、范式
索引 几乎所有的索引都是建立在字段之上 索引:系统根据某种算法,将已有的数据(未来可能新增的数据也算),单独建立一个文件,这个文件能够快速的匹配数据,并且能够快速的找到对应的表中的记录 索引意义 能够 ...
- FastDfs上传图片
1.1. 上传步骤 1.加载配置文件,配置文件中的内容就是tracker服务的地址. 配置文件内容:tracker_server=192.168.25.133:22122 2.创建一个TrackerC ...