【Dp】Bzoj1296 [SCOI2009] 粉刷匠
Description
Input
Output
Sample Input
111111
000000
001100
Sample Output
HINT
30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。
100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=,maxt=; int mark(int a,int b){
return max(a-b,b);
} int n,m,t;
int d[maxn][maxn][maxn],f[maxn][maxt];
int c[maxn][maxn];
char s[maxn][maxn]; int getC(){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
c[i][j]=c[i][j-]+s[i][j]-'';
} int getD(){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=;k<=m;k++)
for(int x=;x<j;x++)
d[i][j][k]=max(d[i][j][k],d[i][x][k-]+mark(j-x,c[i][j]-c[i][x]));
} int getF(){
for(int i=;i<=n;i++)
for(int j=;j<=t;j++)
for(int k=;k<=m&&k<=j;k++)
f[i][j]=max(f[i][j],f[i-][j-k]+d[i][m][k]);
} int main(){
scanf("%d%d%d",&n,&m,&t);
for(int i=;i<=n;i++)
scanf("%s",s[i]+); getC();
getD();
getF();
printf("%d\n",f[n][t]);
return ;
}
【Dp】Bzoj1296 [SCOI2009] 粉刷匠的更多相关文章
- [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2184 Solved: 1259[Submit][Statu ...
- bzoj1296: [SCOI2009]粉刷匠(DP)
1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...
- BZOJ1296: [SCOI2009]粉刷匠 DP
Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...
- 2018.09.02 bzoj1296: [SCOI2009]粉刷匠(dp套dp)
传送门 dp好题. 先推出对于每一行花费k次能最多粉刷的格子数. 然后再推前i行花费k次能最多粉刷的格子数. 代码: #include<bits/stdc++.h> #define N 5 ...
- BZOJ1296 [SCOI2009]粉刷匠 【dp】
题目 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被粉刷 ...
- BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1296 题意概括 有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝 ...
- bzoj1296: [SCOI2009]粉刷匠
dp. 用到俩次dp,用1和0代表俩种颜色,首先对于每块木板我们进行一次dp,g[i][j]代表前j个格子刷i次最多能涂到几个格子. 则 g[i][j]=max(g[i-1][k],max(cnt[j ...
- bzoj1296 [SCOI2009]粉刷匠——背包
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1296 对于不同木板之间,最终统计答案时做一个分组背包即可: 而要进行分组背包,就需要知道每个 ...
- [bzoj1296][SCOI2009]粉刷匠(泛化背包)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1296 分析: 首先预处理出每一行的g[0..T]表示这一行刷0..T次,最多得到的正确格子数 ...
随机推荐
- $cordovaCamera 插件 上传头像 图片功能
首先要注入 $cordovaCamera 使用相机拍照 var useCamera = function() { var options = { //这些参数可能要配合着使用,比如选择了source ...
- Struts2数据传输的背后机制:ValueStack(值栈)
1. 数据传输背后机制:ValueStack(值栈) 在这一切的背后,是因为有了ValueStack(值栈)! ValueStack基础:OGNL 要了解ValueStack,必须先理解OGN ...
- webservice入门简介
为了梦想,努力奋斗! 追求卓越,成功就会在不经意间追上你 webservice入门简介 1.什么是webservice? webservice是一种跨编程语言和跨操作系统平台的远程调用技术. 所谓的远 ...
- 【转载】Linux Cache Mechanism Summary(undone)
http://www.cnblogs.com/LittleHann/p/3904909.html 目录 1. 缓存机制简介 2. 内核缓存机制 3. 内存缓存机制 4. 文件缓存机制 5. 数据库缓存 ...
- Modelsim中使用TCL脚本编写do文件实现自动化仿真
通常我们使用Modelsim进行仿真,是通过图形界面点点点来进行操作,殊不知Modelsim完美支持TCL脚本语言及批处理命令do文件.简单来说就是从你修改完代码后到你重新编译把需要的信号拉出来查看, ...
- 基于Kurento的WebRTC移动视频群聊技术方案
说在前面的话:视频实时群聊天有三种架构: Mesh架构:终端之间互相连接,没有中心服务器,产生的问题,每个终端都要连接n-1个终端,每个终端的编码和网络压力都很大.群聊人数N不可能太大. Router ...
- AngularJS之备忘与诀窍
译自:<angularjs> 备忘与诀窍 目前为止,之前的章节已经覆盖了Angular所有功能结构中的大多数,包括指令,服务,控制器,资源以及其它内容.但是我们知道有时候仅仅阅读是不够的. ...
- maven jsp out.print()request.getParameter() 爆红
如图: 解决方案: 在pom文件中添加依赖: <!-- https://mvnrepository.com/artifact/javax.servlet.jsp/jsp-api -->&l ...
- ng-change事件中如何获取$event和如何在子元素事件中阻止调用父级元素事件(阻止事件冒泡)
闲聊: 今天小颖要实现一个当改变了select内容后弹出一个弹框,并且点击select父元素使得弹框消失,这就得用到阻止事件的冒泡了:$event.stopPropagation(),然而小颖发现,在 ...
- sql server 多行数据合并成一列
首先是源数据: ),cip.CheckIn_StartTime, )),cip.CheckIn_EndTime, )),cip.Rental_Price)) as content from Check ...