Description

题库链接

将一个长度为 \(n\) 的正整数序列分为 \(m\) 段,问你这 \(m\) 段最小的方差 \(v\) 为多少。输出 \(v\times m^2\) 。

\(1\leq n\leq 3000\)

Solution

容易发现答案就是:

\[m^2\frac{\sum\limits_{i=1}^m(a_i-\overline{a})^2}{m}=m\sum\limits_{i=1}^m\left(a_i-\frac{\sum\limits_{i=1}^m a_i}{m}\right)^2\]

记 \(s=\sum\limits_{i=1}^m a_i\) ,

\[m\sum_{i=1}^m a_i^2-2s\sum_{i=1}^m a_i+s^2\]

这玩意就可以斜率优化了。

upd

做的时候制杖了...发现最后的式子还可以化成 \[m\sum_{i=1}^m a_i^2-s^2\]

Code

//It is made by Awson on 2018.3.19
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 3000;
void read(LL &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); } LL n, m, sum[N+5], s;
LL f[N+5][N+5];
int q[N+5], head, tail; LL deltax(int p, int q) {return m*2*(sum[q]-sum[p]); }
LL deltay(int p, int q) {return m*sum[q]*sum[q]-m*sum[p]*sum[p]+s*2*sum[q]-s*2*sum[p]; }
void work() {
read(n), read(m); for (int i = 1; i <= n; i++) read(sum[i]), sum[i] += sum[i-1];
s = sum[n]; memset(f, 127/3, sizeof(f));
f[0][0] = 0;
for (int i = 1; i <= m; i++) {
head = tail = 0; q[tail++] = 0;
for (int j = 1; j <= n; j++) {
while (tail-head > 1 &&
f[i-1][q[head+1]]-f[i-1][q[head]]+deltay(q[head], q[head+1]) <=
sum[j]*deltax(q[head], q[head+1])) ++head;
f[i][j] = f[i-1][q[head]]+m*(sum[j]-sum[q[head]])*(sum[j]-sum[q[head]])-(sum[j]-sum[q[head]])*2*s;
while (tail-head > 1 &&
(f[i-1][q[tail-1]]-f[i-1][q[tail-2]]+deltay(q[tail-2], q[tail-1]))*deltax(q[tail-1], j) >=
(f[i-1][j]-f[i-1][q[tail-1]]+deltay(q[tail-1], j))*deltax(q[tail-2], q[tail-1])) --tail;
q[tail++] = j;
}
}
writeln(f[m][n]+s*s);
}
int main() {
work(); return 0;
}

[SDOI 2016]征途的更多相关文章

  1. SDOI 2016 征途 决策单调性

    题目大意:有一个数列,将其分成m段,求最小方差 先弄出n^3的dp,打出决策点,然后发现决策点是单调递增的,决策单调性搞一搞就可以了 #include<bits/stdc++.h> #de ...

  2. 【BZOJ 4518】【SDOI 2016 Round1 Day2 T3】征途

    比较明显的斜率优化DP,省选时因为时间太紧张和斜率DP写得不熟等原因只写了60分的暴力DP,其实当时完全可以对拍来检验标算的正确,但是我当时too naive- 很快打完了,调了将近一晚上QAQ,因为 ...

  3. 【题解】征途 SDOI 2016 BZOJ 4518

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4518 首先推式子,我们用$x_i$表示第$i$段的路程,$sum$表示总路程,根据方差和平均 ...

  4. SDOI 2016 Round1 Day2

    生成魔咒 /* 后缀数组+双向链表 参照:https://blog.csdn.net/clove_unique/article/details/53911757 */ #include<cstd ...

  5. SDOI 2016 游戏

    树链剖分 线段树维护区间最小值,区间最大值 更新,对于每一个区间,找到当前区间的最小值的最大值,和要更新的值比较,如果比最大值还大,则此数对于以后的询问无任何贡献,直接返回即可,若有贡献,则一直递归到 ...

  6. SDOI 2016 数字配对

    题目大意:给定n个数字以及每个数字的个数和权值,将满足条件的数字配对,使得总代价不小于0,且配对最多 最大费用最大流拆点,对于每个点,连一条由S到该点的边,容量为b,花费为0,再连一条到T的边 对于每 ...

  7. SDOI 2016 生成魔咒

    题目大意:一个字符串,刚开始为空,依次在后面添加一个字符,问每次添加完字符后本质不同的字符串有多少种 后缀自动机裸题,添加字符时,更新的结点个数即为新增加的子串 #include<bits/st ...

  8. SDOI 2016 排列计数

    题目大意:一个数列A,n个元素,其中m个元素不动,其他元素均不在相应位置,问有多少种排列 保证m个元素不动,组合数学直接计算,剩余元素错位排列一下即可 #include<bits/stdc++. ...

  9. 【BZOJ 4600】【SDOI 2016】硬币游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=4600 转化成nim游戏 因为对于每一个反面朝上的硬币编号可以拆成\(2^a3^bc\),选择这个硬币 ...

随机推荐

  1. Linux下ftp和ssh详解

    学习了几天Linux下ftp和ssh的搭建和使用,故记录一下.学习ftp和ssh的主要目的是为了连接远程主机,并且进行文件传输.废话不多说,直接开讲! ftp服务器 1. 环境搭建 本人的系统是Arc ...

  2. Node入门教程(2)第一章:NodeJS 概述

    Node 概述 什么是 Node Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js us ...

  3. 延迟确认和Nagle算法

    前篇文章介绍了三次握手和四次挥手,了解了TCP是如何建立和断开连接的,文末还提到了抓包挥手时的一个“异常”现象,当时无法解释,特地查了资料,知道了数据传输中的延迟确认策略. 何谓延迟确认策略? WIK ...

  4. Sudoku 第一步

    看到这个问题的思路是先解决生成数独生成器的编写,然后再解决数独求解的问题.最开始第一想法就是暴力求解,仔细算一下复杂度,发现这肯定耗时很久,于是看了很多博客(见转载).我们用回溯搜出来正解.

  5. Vue.js和jQuery混合使用的一点注意事项

    首先,Vue 的官方是不建议直接操作 DOM 的,其优势在于视图和数据的双向绑定,而且所有DOM操作都可以用Vue实现,反而使用jQuery来操作DOM的话,会造成不必要的麻烦,DOM未渲染完成之前事 ...

  6. AJAX使用说明书

    AJAX简介 什么是AJAX AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Javascript和XML”.即使用Javascript语言与服务器进行异 ...

  7. Redux应用单一的store原则案例详解

    在开发reac单页面应用的时候,页面的展示逻辑跟数据状态的关系管理变得越来越复杂,redux很好的解决这个问题.废话不多说,直接先上官网api链接. http://cn.redux.js.org/in ...

  8. SLF4J - 借助SLF4J, 统一适配所有日志实现为logback日志实现的实践

    一.屏蔽各种日志实现,去掉各种日志实现的实现依赖 二.引入slf4j和各种日志实现的适配器 1.引入slf4j 2.引入各种日志实现的适配器(适配到slf4j) 3.引入logback 引入logba ...

  9. maven常见问题处理(3-3)Gradle编译时下载依赖失败解决方法

    Gradle编译时在本地仓库中如果没有发现依赖,就会从远程仓库中下载, 默认的远程仓库为 mavenCentral(),即 http://repo1.maven.org/maven2/往往访问速度特别 ...

  10. less初学手记

    less语言学习手记 工具下载 在less学习中,我们都会需要随时编译我们的less文件,查看生成的css样式表是否正确,以及是否符合我们的要求.推荐一款编译软件供大家下载使用:koala,本软件支持 ...