题目描述

lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?

输入输出格式

输入格式:

输入数据是一行,包括2个数字n和m

输出格式:

输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数

输入输出样例

输入样例#1:

2 2
输出样例#1:

2

说明

limitation

每点2秒

对于30%的数据,保证1<=m<=n<=1000

对于100%的数据,保证1<=m<=n<=1000000

首先,我们设选1为(1,1),选0为(1,-1)

目标就是(n+m,n-m)

总方案数为C(n+m,n),因为有n+m个位置,放n个1

然后要减去不合法的即线路通过y=-1的。将线路与y=-1交点的左边沿着y=-1做对称操作,则最后等价于从(0,-2)走到(n+m,n-m)的方案数

所以向上走n-m+2

则有x-y=n-m+2

  x+y=n+m

  x=n+1,y=m-1

所以不合法方案为C(n+m,n+1)

ans=C(n+m,n)-C(n+m,n+1)

求这些用模逆元,O(n)求解

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long A[],B[],ans1,ans2;
int n,m,Mod=;
int main()
{int i,j;
cin>>n>>m;
A[]=;
for (i=;i<=n+m;i++)
A[i]=((Mod-Mod/i)*A[Mod%i])%Mod;
for (i=;i<=n+m;i++)
A[i]=(A[i]*A[i-])%Mod;
B[]=;
for (i=;i<=n+m;i++)
B[i]=(B[i-]*i)%Mod;
ans1=(((B[n+m]*A[n])%Mod)*A[m])%Mod;
ans2=(((B[n+m]*A[n+])%Mod)*A[m-])%Mod;
cout<<(ans1-ans2+Mod)%Mod;
}

[SCOI2010]生成字符串的更多相关文章

  1. [SCOI2010]生成字符串 题解(卡特兰数的扩展)

    [SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...

  2. P1641 [SCOI2010]生成字符串

    P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...

  3. BZOJ1856 [SCOI2010]生成字符串 【组合数】

    题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...

  4. 卡特兰数 洛谷P1641 [SCOI2010]生成字符串

    卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...

  5. BZOJ1856或洛谷1641 [SCOI2010]生成字符串

    BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...

  6. Luogu 1641[SCOI2010]生成字符串 - 卡特兰数

    Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...

  7. 【[SCOI2010]生成字符串】

    \(n=m\)时候经典的卡特兰 那\(n!=m\)呢,还是按照卡特兰的方式来推 首先总情况数就是\(\binom{n+m}{n}\),在\(n+m\)个里选择\(n\)个\(1\) 显然有不合法的情况 ...

  8. 洛谷 1641 [SCOI2010]生成字符串

    题目戳这里 一句话题意 求\(C_{m+n}^{m}\)-\(C_{m+n}^{m-1}\) Solution 巨说这个题目很水 标签居然还有字符串? 但是我还不很会用逆元真的太菜了,还好此题模数P为 ...

  9. luogu P1641 [SCOI2010]生成字符串

    传送门 代码极短 \(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1 ...

随机推荐

  1. Hibernate之Hibernate的下载与安装

    Hibernate用法十分简单,当我们在Java项目中引入Hibernate框架之后,就能以面向对象的方式来操作关系数据库了. 下载: 登陆Hibernate官网,下载Hibernate压缩包,win ...

  2. 服务器数据恢复_Linux网站服务器故障数据恢复案例

    [数据恢复故障描述] 一台linux网站服务器,DELL R200,管理约50个左右网站,使用一块SATA 160GB硬盘.正常使用中突然宕机,尝试再次启动失败,将硬盘拆下检测时发现存在约100个坏扇 ...

  3. 同样是IT培训,为什么人家月薪过万,你才几千,问题在哪?!

    听过一句话"360行,行行转IT",虽然有些夸张,但也不难看出IT行业的火爆程度.从李总理提的"互联网+大数据"开始,中国的这场"互联网+" ...

  4. intellij idea 找不到或无法加载主类

    解决intellij idea 找不到或无法加载主类,请看以下图文介绍 然后idea会重启,等idea启动后 右侧的maven clean 一下,然后再compile就解决了

  5. 关于APIcloud对应C#的 wcf框架作为后台,实现多库功能

    首先,我是使用ajax原来的请求方式,并没有使用apicloud中封装的请求方式. 前端代码: function makeRequest() { //alert("inside makeRe ...

  6. token 验证

    组件: https://jwt.io/#libraries-io

  7. python3+beautifulSoup4.6抓取某网站小说(四)多线程抓取

    上一篇多文章,是二级目录,根目录"小说",二级目录"作品名称",之后就是小说文件. 本篇改造了部分代码,将目录设置为根目录->作者目录->作品目录- ...

  8. 作业五:RE 模块模拟计算器

    # !/usr/bin/env python3 # _*_coding:utf-8_*_ ''' 实现模拟计算器的功能: 公式: - * ( (- +(-/) * (-*/ + /*/* + * / ...

  9. 批量检测GoAhead系列服务器中Digest认证方式的服务器弱口令

    最近在学习用python写爬虫工具,某天偶然发现GoAhead系列服务器的登录方式跟大多数网站不一样,不是采用POST等方法,通过查找资料发现GoAhead是一个开源(商业许可).简单.轻巧.功能强大 ...

  10. Docker学习笔记 - Docker客户端和服务端

    学习内容: Docker客户端和服务端的通讯方式:client和自定义程序 Docker客户端和服务端的连接方式:socket 演示Docker客户端和服务端之间用remote-api通讯:nc   ...