题目

leetcode题解-122.买卖股票的最佳时机:https://www.yanbinghu.com/2019/03/14/30893.html

题目详情

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
     因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

解法一

暴力解法,我们从第一个买入开始计算,分别计算第二个卖出,加上后面可能的最大利润,第三个卖出,加上后面可能的最大利润,以此类推,得到这所有情况中,利润最大的一种;再计算第二个买入,分别计算第三个卖出,加上后面可能的最大利润,第四个卖出,加上后面可能的最大利润,得到买入第二个能得到的最大利润,最终得到所能得到的最大利润。该方式所实现的代码如下:

int getMaxProfit(int *prices,int pricesSize,int start)
{
    /*如果开始计算的下标等于数组大小,则计算结束*/
    if(start >= pricesSize)
        return 0;
    int max = 0;
    int s = start;
    for(;s < pricesSize;s++)
    {
        int maxPro = 0;
        int j = s + 1;
        for(; j < pricesSize;j++)
        {
            /*有利可图*/
            if(prices[j] > prices[s])
            {
                /*当前最大利润为后面部分最大利润加上当前利润*/
                int nowPro = getMaxProfit(prices,pricesSize,j+1) + prices[j] - prices[s];
                /*本次买入利润为两者中较大的一个*/
                maxPro = nowPro > maxPro?nowPro:maxPro;
            }
        }
        max = maxPro > max?maxPro:max;
    }
    return max; } int maxProfit(int* prices, int pricesSize) 
{
    if(NULL == prices || 0 == pricesSize)
        return 0;
    return getMaxProfit(prices, pricesSize,0);
}

该解法复杂度较高,其中时间复杂度O(n^n),而空间复杂度O(n)(递归深度)。

解法二

换个角度思考,我们其实就是在赚差价,既然如此,我们只要遇见一个阶段最大的差价赚它一笔就可以了,而且尽可能多的赚。也就是说其实一旦到了某个阶段的最低点(波谷),就可以买入,到了某个阶段的最高点(波峰),就可以卖出。以[7,1,5,3,6,4]为例,我们首先要找到一个波谷,从开始往后扫描,发现第一个波谷为1(左右两边比它大),而找到第一个波峰为5(左边两边都比它低),因此1为买入点,5为卖出点,利润为4。继续往后,发现第二个波谷为3(左右两边都比它大),而找到波谷6,(左右两边都比它小),因此在3时买入,在6时卖出,利润为3。因此总利润为7。

按照这种思路我们的代码实现如下:

int maxProfit(int* prices,int pricesSize) 
{
    if(NULL == prices || 0 == pricesSize)
        return 0;
    int i = 0;
    int low = prices[0];
    int hig = prices[0];
    int maxprofit = 0;
    while (i < pricesSize - 1) 
    {
        /*如果一直有比当前小的,继续往前扫描*/
        while (i < pricesSize - 1 && prices[i] >= prices[i + 1])
            i++;
        /*得到波谷点*/
        low = prices[i];         /*找到波峰*/
        while (i <pricesSize - 1 && prices[i] <= prices[i + 1])
            i++;
        hig = prices[i];
        /*当前最大利润*/
        maxprofit += hig - low;
    }
    return maxprofit;
}

这种解法的时间复杂度为O(n),空间复杂度O(1)。

解法三

既然通过波峰与波谷的差价可以得到利润,那么实际上可以在发现在上升期就开始计算利润了,也就是说不需要达到波峰时,才用波峰减去波谷计算利润。以[7,1,5,3,4,6]为例,从头开始,1大于7,无利可图,5大于1,有利可图,得利润4;3小于5,无利可图;4大于3,有利可图,得利润1;6大于4,有利可图,得利润2;总利润为7。

按照这种思路,我们实现的代码如下:

int maxProfit(int* prices, int pricesSize) 
{
    if(NULL == prices || 0 == pricesSize)
        return 0;
    int profit = 0;
    int i = 1;
    while(i < pricesSize)
    {
        if(prices[i] > prices[i-1])
            profit += prices[i]-prices[i-1];
        i++;
    }
    return profit; }

这种解法的时间复杂度为O(n),空间复杂度O(1)。

讨论

你还有什么解法?欢迎在留言区评论。

微信公众号【编程珠玑】:专注但不限于分享计算机编程基础,Linux,C语言,C++,算法,数据库等编程相关[原创]技术文章,号内包含大量经典电子书和视频学习资源。欢迎一起交流学习,一起修炼计算机“内功”,知其然,更知其所以然。

公众号编程珠玑

leetcode题解-122买卖股票的最佳时期的更多相关文章

  1. [LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. [LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  3. [LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  5. [LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  6. Leetcode之动态规划(DP)专题-122. 买卖股票的最佳时机 II(Best Time to Buy and Sell Stock II)

    Leetcode之动态规划(DP)专题-122. 买卖股票的最佳时机 II(Best Time to Buy and Sell Stock II) 股票问题: 121. 买卖股票的最佳时机 122. ...

  7. 【Leetcode】【简单】【122. 买卖股票的最佳时机 II】【JavaScript】

    题目描述 122. 买卖股票的最佳时机 II 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票) ...

  8. [LeetCode] 714. Best Time to Buy and Sell Stock with Transaction Fee 买卖股票的最佳时间有交易费

    Your are given an array of integers prices, for which the i-th element is the price of a given stock ...

  9. Java实现 LeetCode 122 买卖股票的最佳时机 II

    122. 买卖股票的最佳时机 II 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意: ...

随机推荐

  1. SQL Server死锁中的会话隔离级别为序列化(Serializable)实验测试

    最近在分析SQL Server的死锁时,发现一个比较有意思的现象,发现死锁当中一个会话的隔离级别为序列化(Serializable),这个是让人比较奇怪的地方,我们知道SQL Server数据库的默认 ...

  2. Vue番外篇 -- vue-router浅析原理

    近期被问到一个问题,在你们项目中使用的是Vue的SPA(单页面)还是Vue的多页面设计? 这篇文章主要围绕Vue的SPA单页面设计展开. 关于如何展开Vue多页面设计请点击查看. 官网vue-rout ...

  3. Kubernetes初探[1]:部署你的第一个ASP.NET Core应用到k8s集群

    Kubernetes简介 Kubernetes是Google基于Borg开源的容器编排调度引擎,作为CNCF(Cloud Native Computing Foundation)最重要的组件之一,它的 ...

  4. Sitecore® 8.2 Professional Developer考试心得

    因工作原因入了Sitecore的坑.. 不了解Sitecore认证考试的同学请移步: http://www.cnblogs.com/edisonchou/archive/2018/08/17/9488 ...

  5. 没错,老板让我写个 BUG!

    前言 标题没有看错,真的是让我写个 bug! 刚接到这个需求时我内心没有丝毫波澜,甚至还有点激动.这可是我特长啊:终于可以光明正大的写 bug 了

  6. java~gradle构建公用包并上传到仓库~使用私有仓库的包

    在新的项目里使用仓库的包 上一讲中我们说了java~gradle构建公用包并上传到仓库,如何发布公用的非自启动类的包到私有仓库,而这一讲我们将学习如何使用这些包,就像我们使用spring框架里的功能包 ...

  7. node.js学习资料(2015-12)

    使用vscode开发,设置代码智能提示的方法,cd 项目目录,然后使用以下命令npm install tsd -gtsd install node express angular -ros 下载 Gi ...

  8. Vmware虚拟机中CentOS7与Docker安装图文教程

    1.安装VMware 下载一个软件安装: 2.新建一个虚拟机 等待自动安装完成 配置系统语言: 配置系统时间: 配置系统键盘: 语言支持: 默认自动使用安装源: 配置软件环境,需要及时添加的软件,这里 ...

  9. 浅谈mybatis如何半自动化解耦

    在JAVA发展过程中,涌现出一系列的ORM框架,JPA,Hibernate,Mybatis和Spring jdbc,本系列,将来研究Mybatis. 通过研究mybatis源码,可将mybatis的大 ...

  10. k8s滚动更新(六)--技术流ken

    实践 滚动更新是一次只更新一小部分副本,成功后,再更新更多的副本,最终完成所有副本的更新.滚动更新的最大的好处是零停机,整个更新过程始终有副本在运行,从而保证了业务的连续性. 下面我们部署三副本应用, ...