题目

leetcode题解-122.买卖股票的最佳时机:https://www.yanbinghu.com/2019/03/14/30893.html

题目详情

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
     因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

解法一

暴力解法,我们从第一个买入开始计算,分别计算第二个卖出,加上后面可能的最大利润,第三个卖出,加上后面可能的最大利润,以此类推,得到这所有情况中,利润最大的一种;再计算第二个买入,分别计算第三个卖出,加上后面可能的最大利润,第四个卖出,加上后面可能的最大利润,得到买入第二个能得到的最大利润,最终得到所能得到的最大利润。该方式所实现的代码如下:

int getMaxProfit(int *prices,int pricesSize,int start)
{
    /*如果开始计算的下标等于数组大小,则计算结束*/
    if(start >= pricesSize)
        return 0;
    int max = 0;
    int s = start;
    for(;s < pricesSize;s++)
    {
        int maxPro = 0;
        int j = s + 1;
        for(; j < pricesSize;j++)
        {
            /*有利可图*/
            if(prices[j] > prices[s])
            {
                /*当前最大利润为后面部分最大利润加上当前利润*/
                int nowPro = getMaxProfit(prices,pricesSize,j+1) + prices[j] - prices[s];
                /*本次买入利润为两者中较大的一个*/
                maxPro = nowPro > maxPro?nowPro:maxPro;
            }
        }
        max = maxPro > max?maxPro:max;
    }
    return max; } int maxProfit(int* prices, int pricesSize) 
{
    if(NULL == prices || 0 == pricesSize)
        return 0;
    return getMaxProfit(prices, pricesSize,0);
}

该解法复杂度较高,其中时间复杂度O(n^n),而空间复杂度O(n)(递归深度)。

解法二

换个角度思考,我们其实就是在赚差价,既然如此,我们只要遇见一个阶段最大的差价赚它一笔就可以了,而且尽可能多的赚。也就是说其实一旦到了某个阶段的最低点(波谷),就可以买入,到了某个阶段的最高点(波峰),就可以卖出。以[7,1,5,3,6,4]为例,我们首先要找到一个波谷,从开始往后扫描,发现第一个波谷为1(左右两边比它大),而找到第一个波峰为5(左边两边都比它低),因此1为买入点,5为卖出点,利润为4。继续往后,发现第二个波谷为3(左右两边都比它大),而找到波谷6,(左右两边都比它小),因此在3时买入,在6时卖出,利润为3。因此总利润为7。

按照这种思路我们的代码实现如下:

int maxProfit(int* prices,int pricesSize) 
{
    if(NULL == prices || 0 == pricesSize)
        return 0;
    int i = 0;
    int low = prices[0];
    int hig = prices[0];
    int maxprofit = 0;
    while (i < pricesSize - 1) 
    {
        /*如果一直有比当前小的,继续往前扫描*/
        while (i < pricesSize - 1 && prices[i] >= prices[i + 1])
            i++;
        /*得到波谷点*/
        low = prices[i];         /*找到波峰*/
        while (i <pricesSize - 1 && prices[i] <= prices[i + 1])
            i++;
        hig = prices[i];
        /*当前最大利润*/
        maxprofit += hig - low;
    }
    return maxprofit;
}

这种解法的时间复杂度为O(n),空间复杂度O(1)。

解法三

既然通过波峰与波谷的差价可以得到利润,那么实际上可以在发现在上升期就开始计算利润了,也就是说不需要达到波峰时,才用波峰减去波谷计算利润。以[7,1,5,3,4,6]为例,从头开始,1大于7,无利可图,5大于1,有利可图,得利润4;3小于5,无利可图;4大于3,有利可图,得利润1;6大于4,有利可图,得利润2;总利润为7。

按照这种思路,我们实现的代码如下:

int maxProfit(int* prices, int pricesSize) 
{
    if(NULL == prices || 0 == pricesSize)
        return 0;
    int profit = 0;
    int i = 1;
    while(i < pricesSize)
    {
        if(prices[i] > prices[i-1])
            profit += prices[i]-prices[i-1];
        i++;
    }
    return profit; }

这种解法的时间复杂度为O(n),空间复杂度O(1)。

讨论

你还有什么解法?欢迎在留言区评论。

微信公众号【编程珠玑】:专注但不限于分享计算机编程基础,Linux,C语言,C++,算法,数据库等编程相关[原创]技术文章,号内包含大量经典电子书和视频学习资源。欢迎一起交流学习,一起修炼计算机“内功”,知其然,更知其所以然。

公众号编程珠玑

leetcode题解-122买卖股票的最佳时期的更多相关文章

  1. [LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. [LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  3. [LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  5. [LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  6. Leetcode之动态规划(DP)专题-122. 买卖股票的最佳时机 II(Best Time to Buy and Sell Stock II)

    Leetcode之动态规划(DP)专题-122. 买卖股票的最佳时机 II(Best Time to Buy and Sell Stock II) 股票问题: 121. 买卖股票的最佳时机 122. ...

  7. 【Leetcode】【简单】【122. 买卖股票的最佳时机 II】【JavaScript】

    题目描述 122. 买卖股票的最佳时机 II 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票) ...

  8. [LeetCode] 714. Best Time to Buy and Sell Stock with Transaction Fee 买卖股票的最佳时间有交易费

    Your are given an array of integers prices, for which the i-th element is the price of a given stock ...

  9. Java实现 LeetCode 122 买卖股票的最佳时机 II

    122. 买卖股票的最佳时机 II 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意: ...

随机推荐

  1. pytest之收集用例规则与运行指定用例

    前言 上篇文章相信大家已经了解了pytest在cmd下结合各种命令行参数如何运行测试用例,并输出我们想要看到的信息.那么今天会讲解一下pytest是如何收集我们写好的用例?我们又有哪些方式来运行单个用 ...

  2. MongoDB安装与使用体验

    1.获取并安装 具体的安装包可以到官方网站下载:http://www.mongodb.org/downloads 我看着教程就下载了linux版本吧,也不是很复杂.包的体积有点大. 安装过程比较简单, ...

  3. CTF取证方法大汇总,建议收藏!

    站在巨人的肩头才会看见更远的世界,这是一篇来自技术牛人的神总结,运用多年实战经验总结的CTF取证方法,全面细致,通俗易懂,掌握了这个技能定会让你在CTF路上少走很多弯路,不看真的会后悔! 本篇文章大约 ...

  4. Python爬虫10-页面解析数据提取思路方法与简单正则应用

    GitHub代码练习地址:正则1:https://github.com/Neo-ML/PythonPractice/blob/master/SpiderPrac15_RE1.py 正则2:match. ...

  5. React 与 React-Native 使用同一个 meteor 后台

    meteor 可以快速构建 pc,移动端,桌面端应用. 最大的优点是:数据库的数据发生变化时,可以实时推送到前端,非常适用于实时展示的应用开发. 在 react,react-native 应用中,可以 ...

  6. Java的数组,栈,队列

    import java.util.Arrays; public class Array<E> { private E[] data; private int size; //构造函数,传入 ...

  7. SQLI LABS Basic Part(1-22) WriteUp

    好久没有专门练SQL注入了,正好刷一遍SQLI LABS,复习巩固一波~ 环境: phpStudy(之前一直用自己搭的AMP,下了这个之后才发现这个更方便,可以切换不同版本的PHP,没装的小伙伴赶紧试 ...

  8. [区块链] 加密算法——Hash算法(进阶)

    为了为保证存储于区块链中的信息的安全与完整,区块链中使用了包含密码哈希函数和椭圆曲线公钥密码技术在内的大量的现代密码学技术,同时,这些密码学技术也被用于设计基于工作量证明的共识算法并识别用户. 在前边 ...

  9. 【Android Studio安装部署系列】二十七、Android studio修改项目名称和包名

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 实际项目开发中可能碰到项目名称写错了或者需要修改,而且包名可能也想要修改,那么如何操作呢. 本文是在Android Studio3. ...

  10. AutoStartUtil【打开自启动设置界面】

    参考资料 Android6.0 打开自启动管理页面(华为.小米) Android打开自启动设置页面 Android 机型设置自启动的跳转界面 代码 注意:需要搭配<RomUtil[Android ...