【原】Spark之机器学习(Python版)(二)——分类
写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了。然而我在学习的过程中发现,PySpark很鸡肋(至少现在我觉得我不会拿PySpark做开发)。为什么呢?原因如下:
1.PySpark支持的算法太少了。我们看一下PySpark支持的算法:(参考官方文档)
前面两个pyspark.sql和pyspark.streaming是对sql和streaming的支持。主要是读取数据,和streaming处理这种方式(当然这是spark的优势,要是这也不支持真是见鬼了)。pyspark.ml和pyspark.mllib分别是ml的api和mllib的api,ml的算法真心少啊,而且支持的功能很有限,譬如Lr(逻辑回归)和GBT目前只支持二分类,不支持多分类。mllib相对好点,支持的算法也多点,虽然昨天发的博文讲mlllib的时候说过有的算法不支持分布式,所以才会有限,但是我在想,如果我需要用到A算法,而Ml和Mllib的包里面都没有,这样是不是意味着要自己开发分布式算法呢?代价有点大诶,感觉写这个的时间不如多找找有用的特征,然后上LR,这样效果说不定更好。因为目前还没有在实际中用过,所以以上只是我的想法。下面把ml和mllib的所有api列出来,这样看的更清楚。

图一 pyspark.ml的api

图二 pyspark.mllib的api
从上面两张图可以看到,mllib的功能比ml强大的不是一点半点啊,那ml这个包的存在还有什么意义呢?不懂(如果有了解的欢迎留言)。虽然有这么多疑问,但是我还是跟大家讲了,用的数据依然是iris(其实我真心想换个数据集啊 == ,下次换)。上代码:
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
df = sqlContext.read.format('com.databricks.spark.csv').options(header='true', inferschema='true').load('iris.csv')
# Displays the content of the DataFrame to stdout
df.show() from pyspark.ml.feature import StringIndexer
indexer = StringIndexer(inputCol="Species", outputCol="labelindex")
indexed = indexer.fit(df).transform(df)
indexed.show() from pyspark.sql import Row
from pyspark.mllib.linalg import Vectors
from pyspark.ml.classification import NaiveBayes # Load and parse the data
def parseRow(row):
return Row(label=row["labelindex"],
features=Vectors.dense([row["Sepal.Length"],
row["Sepal.Width"],
row["Petal.Length"],
row["Petal.Width"]])) ## Must convert to dataframe after mapping
parsedData = indexed.map(parseRow).toDF()
labeled = StringIndexer(inputCol="label", outputCol="labelpoint")
data = labeled.fit(parsedData).transform(parsedData)
data.show() ## 训练模型
#Naive Bayes
nb = NaiveBayes(smoothing=1.0, modelType="multinomial")
model_NB = nb.fit(data)
predict_data= model_NB.transform(data)
traing_err = predict_data.filter(predict_data['label'] != predict_data['prediction']).count()
total = predict_data.count()
nb_scores = float(traing_err)/total
print traing_err, total, nb_scores
#7 150 0.0466666666667 #Logistic Regression###########################################################
# Logistic regression. Currently, this class only supports binary classification.
from pyspark.ml.classification import LogisticRegression
lr = LogisticRegression(maxIter=5, regParam=0.01)
model_lr = lr.fit(data)
predict_data= model_lr.transform(data)
traing_err = predict_data.filter(predict_data['label'] != predict_data['prediction']).count()
total = predict_data.count()
lr_scores = float(traing_err)/total
print traing_err, total, float(traing_err)/total #Decision Tree
from pyspark.ml.classification import DecisionTreeClassifier
dt = DecisionTreeClassifier(maxDepth=2,labelCol = 'labelpoint')
model_DT= dt.fit(data)
predict_data= model_DT.transform(data)
traing_err = predict_data.filter(predict_data['label'] != predict_data['prediction']).count()
total = predict_data.count()
dt_scores = float(traing_err)/total
print traing_err, total, float(traing_err)/total #GBT###########################################################
## GBT. Currently, this class only supports binary classification.
from pyspark.ml.classification import GBTClassifier
gbt = GBTClassifier(maxIter=5, maxDepth=2,labelCol="labelpoint")
model_gbt = gbt.fit(data)
predict_data= model_gbt.transform(data)
traing_err = predict_data.filter(predict_data['label'] != predict_data['prediction']).count()
total = predict_data.count()
dt_scores = float(traing_err)/total
print traing_err, total, float(traing_err)/total #Random Forest
from pyspark.ml.classification import RandomForestClassifier
rf = RandomForestClassifier(numTrees=3, maxDepth=2, labelCol="labelpoint", seed=42)
model_rf= rf.fit(data)
predict_data= model_rf.transform(data)
traing_err = predict_data.filter(predict_data['label'] != predict_data['prediction']).count()
total = predict_data.count()
dt_scores = float(traing_err)/total
print traing_err, total, float(traing_err)/total #MultilayerPerceptronClassifier###########################################################
# Classifier trainer based on the Multilayer Perceptron. Each layer has sigmoid activation function, output layer has softmax.
# Number of inputs has to be equal to the size of feature vectors. Number of outputs has to be equal to the total number of labels.
from pyspark.ml.classification import MultilayerPerceptronClassifier
mlp = MultilayerPerceptronClassifier(maxIter=100, layers=[150, 5, 150], blockSize=1, seed=11)
model_mlp= mlp.fit(parsedData)
predict_data= model_mlp.transform(parsedData)
traing_err = predict_data.filter(predict_data['label'] != predict_data['prediction']).count()
total = predict_data.count()
dt_scores = float(traing_err)/total
print traing_err, total, float(traing_err)/total
因为数据集和上次讲pyspark聚类应用的数据是一样的,就不一步步的展示了,但是我这个程序里只有NaiveBayes的效果还行,0.94的正确率,其他的像DecisionTree等,效果真心差,可能参数还需要调。先掌握怎么用再来调参,官方文档里关于参数的解释也非常详细,可以看看。下一次讲回归,我决定不只写pyspark.ml的应用了,因为实在是图样图naive,想弄清楚pyspark的机器学习算法是怎么运行的,跟普通的算法运行有什么区别,优势等,再写个pyspark.mllib,看相同的算法在ml和mllib的包里运行效果有什么差异,如果有,是为什么,去看源码怎么写的。此外,我真的想弄清楚这货在实际生产中到底有用吗,毕竟还是要落实生产的,我之前想,如果python的sklearn能够在spark上应用就好了,后来在databricks里面找到了一个包好像是准备把sklearn弄到spark上来,当然算法肯定要重新写,不过还没有发布,期待发布的时候。此外,我在知乎上也看到过有人提问说“spark上能用skearn吗?”(大概是这意思,应该很好搜),里面有个回答好像说可以,不过不是直接用(等我找到了把链接放出来)。其实换一种想法,不用spark也行,直接用mapreduce编程序,但是mapreduce慢啊(此处不严谨,因为并没有测试过两者的性能差异,待补充),在我使用spark的短暂时间内,我个人认为spark的优势在于数据处理快,它不需要像mapreduce一样把数据切分成这么多块计算然后再reduce合并,而是直接将数据导入的时候就指定分区,运行机制不同,尤其是spark streaming的功能,还是很快的,所以这是spark的优势(鄙人拙见,如有错误欢迎指出)。而spark的劣势也比较明显,因为它对设备的要求太高了(吃内存啊能不高吗!),这也是它快的原因,你把数据都放在内存里,取的时间比放在磁盘里当然要快,不过实际上在存储数据或者输出结果的时候还是会选择(memory+disk)的方式,保险嘛。前段时间看的alluxio也是占了内存的优势。恩,说了很多废话。下周争取研究的深一点,不然在公司里讲都没人听 = =。
【原】Spark之机器学习(Python版)(二)——分类的更多相关文章
- 【原】Spark之机器学习(Python版)(一)——聚类
kmeans聚类相信大家都已经很熟悉了.在Python里我们用kmeans通常调用Sklearn包(当然自己写也很简单).那么在Spark里能不能也直接使用sklean包呢?目前来说直接使用有点困 ...
- Spark之机器学习(Python版)(一)——聚类
https://www.cnblogs.com/charlotte77/p/5437611.html
- Spark 多项式逻辑回归__二分类
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{L ...
- Spark入门(Python版)
Hadoop是对大数据集进行分布式计算的标准工具,这也是为什么当你穿过机场时能看到”大数据(Big Data)”广告的原因.它已经成为大数据的操作系统,提供了包括工具和技巧在内的丰富生态系统,允许使用 ...
- (一)Spark简介-Java&Python版Spark
Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月 ...
- Spark入门:Spark运行架构(Python版)
此文为个人学习笔记如需系统学习请访问http://dblab.xmu.edu.cn/blog/1709-2/ 基本概念 * RDD:是弹性分布式数据集(Resilient Distributed ...
- Alink漫谈(八) : 二分类评估 AUC、K-S、PRC、Precision、Recall、LiftChart 如何实现
Alink漫谈(八) : 二分类评估 AUC.K-S.PRC.Precision.Recall.LiftChart 如何实现 目录 Alink漫谈(八) : 二分类评估 AUC.K-S.PRC.Pre ...
- 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...
- 【Todo】【转载】Spark学习 & 机器学习(实战部分)-监督学习、分类与回归
理论原理部分可以看这一篇:http://www.cnblogs.com/charlesblc/p/6109551.html 这里是实战部分.参考了 http://www.cnblogs.com/shi ...
随机推荐
- WCF Basics - FAQs Series【WCF基础----问答系列教程】
WCF学习系列一[WCF Interview Questions-Part 1 翻译系列] WCF学习系列二---[WCF Interview Questions – Part 2 翻译系列] WCF ...
- Asp.Net Core 项目实战之权限管理系统(1) 使用AdminLTE搭建前端
0 Asp.Net Core 项目实战之权限管理系统(0) 无中生有 1 Asp.Net Core 项目实战之权限管理系统(1) 使用AdminLTE搭建前端 2 Asp.Net Core 项目实战之 ...
- 从架构层面谈web加载优化(个人整理)
最近听了阿里一位大牛的讲座,讲web架构优化对网页加载的影响,看完之后对他所讲的一些优化方法进行一些总结和整理,发现收获还是蛮多的,下面多为个人整理和个人见解,希望有说的不对的,能及时指出 1.DNS ...
- Basic Tutorials of Redis(6) - List
Redis's List is different from C#'s List,but similar with C#'s LinkedList.Sometimes I confuse with t ...
- .net 一些开源的东东
来自网络..版权归网络所有..Antlr ----- Website: http://www.antlr.org/ Copyright: Copyright (c) - Terence Parr Li ...
- JavaScript 字符串操作
JavaScript 字符串用于存储和处理文本.因此在编写 JS 代码之时她总如影随形,在你处理用户的输入数据的时候,在读取或设置 DOM 对象的属性时,在操作 Cookie 时,在转换各种不同 Da ...
- mui scroll和上拉加载/下拉刷新
mui中 scroll和上拉加载/下拉刷新同时存在会出现两个滚动条 把/* */ /* //mui页面鼠标拖动代码: mui('.mui-scroll-wrapper').scroll({ dec ...
- 如何利用FineBI做财务分析
很多企业随着业务规模的增长,传统的财务分析方式采用手工摘取数据的方式,难以快速地对企财务经营状况作出及时分析和预测.现在业务人员通过使用自助式BI工具做财务分析已经成为流行,每个人都希望自己做报表,快 ...
- 中国式商业智能报表ActiveReports免费公开课,10月20日开讲
ActiveReports公开课全方位报表解决方案,满足商业报表五大需求 [开课时间]10月20日[主讲老师]葡萄城报表产品经理[开课形式]网络在线公开课[活动费用]前50名免费 适合人群:报表开发人 ...
- Android Weekly Notes Issue #222
Android Weekly Issue #222 September 11th, 2016 Android Weekly Issue #222 ARTICLES & TUTORIALS Fo ...