[总结] fhq_Treap 学习笔记
无旋版 $Treap$。
只需要两个操作即可达到 $splay$ 的所有功能
1、$split$
它的主要思想就是把一个 $Treap$ 分成两个。
$split$ 操作有两种类型,一种是按照权值分配,一种是按前 k 个分配。
第一种就是把所有小于 k 的权值的节点分到一棵树中,第二种是把前 k 个分到一个树里。
权值版:
void split(int o,int k,int &x,int &y){ //这里的x,y分别是将以o为根的树切开后第一个新子树的根和第二个新子树的根
if(!o) x=y=;
else {
if(val[o]<=k)
x=o,split(ch[o][],k,ch[o][],y);
else
y=o,split(ch[o][],k,x,ch[o][]);
pushup(o);
}
}
对于我们遍历到每一个点,假如它的权值小于k,那么它的所有左子树,都要分到左边的树里,然后遍历它的右儿子。假如大于k,把它的所有右子树分到右边的树里,遍历左儿子。
因为它的最多操作次数就是一直分到底,效率就是 $O(logn)$。
对于前k个版的,就是像找第k大的感觉。每次减掉sze
void split(int now,int k,int &x,int &y){
if (!now) x=y=;
else{
if (k<=siz[ch[now][]])
y=now,split(ch[now][],k,x,ch[now][]);
else
x=now,split(ch[now][],k-sze[ch[now][]]-,ch[now][],y);
pushup(now);
}
}
2、$merge$
这个就是把两个 $Treap$ 合成一个,保证第一个的权值小于第二个。
因为第一个 $Treap$ 的权值都比较小,我们比较一下它的 $prio$ (优先级),假如第一个的 $prio$ 小,我们就可以直接保留它的所有左子树,接着把第一个 $Treap$ 变成它的右儿子。反之,我们可以保留第二棵的所有右子树,指针指向左儿子。
你可以把这个过程形象的理解为在第一个 $ Treap$ 的右子树上插入第二个树,也可以理解为在第二个树的左子树上插入第一棵树。因为第一棵树都满足小于第二个树,所以就变成了比较 $prio$ 来确定树的形态。
也就是说,我们其实是遍历了第一个$Treap$ 的根->最大节点,第二个$Treap$的根->最小节点,也就是 $O(logn)$
int merge(int x,int y){
if(!x or !y) return x+y;
if(prio[x]<prio[y]){
ch[x][]=merge(ch[x][],y);
pushup(x);
return x;
}
else{
ch[y][]=merge(x,ch[y][]);
pushup(y);
return y;
}
}
下面我们就可以通过这两个基本的东西实现各种各样的操作了。
3、insert
插入一个权值为 $k$ 的点,把树按照 $k$ 的权值 $split$ 成两个,再 $merge$ 回去。
4、remove
删除权值为 $k$ 的点,把树按照 $k$ 分成两个$a,b$ 再把$a$ 按照 $k-1$ 分成$c,d$。把$d$ 的两个儿子 $merge$起来,再 $merge(merge(c,d),b)$
void remove(int k){
int x,y,z;
split(Root,k,x,y);
split(x,k-,x,z);
z=merge(ch[z][],ch[z][]);
Root=merge(x,merge(z,y));
}
其它见代码
// 普通平衡树 fhq_Treap
// By YoungNeal
#include<cstdio>
#include<cstdlib>
#define N 100005
#define inf 0x3f3f3f3f int Root;
int n,opt,x,tot;
int val[N],prio[N];
int sze[N],ch[N][]; void pushup(int o){
sze[o]=sze[ch[o][]]+sze[ch[o][]]+;
} void split(int o,int k,int &x,int &y){
if(!o) x=y=;
else {
if(val[o]<=k)
x=o,split(ch[o][],k,ch[o][],y);
else
y=o,split(ch[o][],k,x,ch[o][]);
pushup(o);
}
} int merge(int x,int y){
if(!x or !y) return x+y;
if(prio[x]<prio[y]){
ch[x][]=merge(ch[x][],y);
pushup(x);
return x;
}
else{
ch[y][]=merge(x,ch[y][]);
pushup(y);
return y;
}
} int newnode(int v){
sze[++tot]=;
val[tot]=v;
prio[tot]=rand();
return tot;
} void insert(int k){
int x,y;
split(Root,k,x,y);
Root=merge(merge(x,newnode(k)),y);
} void remove(int k){
int x,y,z;
split(Root,k,x,y);
split(x,k-,x,z);
z=merge(ch[z][],ch[z][]);
Root=merge(x,merge(z,y));
} void kthrank(int k){
int x,y;
split(Root,k-,x,y);
printf("%d\n",sze[x]+);
Root=merge(x,y);
} int rank(int o,int k){
if(sze[ch[o][]]==k-) return val[o];
if(sze[ch[o][]]>=k) return rank(ch[o][],k);
return rank(ch[o][],k-sze[ch[o][]]-);
} void prev(int k){
int x,y;
split(Root,k-,x,y);
printf("%d\n",rank(x,sze[x]));
Root=merge(x,y);
} void nxt(int k){
int x,y;
split(Root,k,x,y);
printf("%d\n",rank(y,));
Root=merge(x,y);
} signed main(){
scanf("%d",&n);
while(n--){
scanf("%d%d",&opt,&x);
if(opt==) insert(x);
if(opt==) remove(x);
if(opt==) kthrank(x);
if(opt==) printf("%d\n",rank(Root,x));
if(opt==) prev(x);
if(opt==) nxt(x);
}
return ;
}
5、区间操作
对于翻转区间 $[l,r]$,我们可以先把区间 $[1,l-1]$ $split$ 出来,再把 $[l,r]$ $split$ 出来就行了。注意 $lazy$ 标记及时清除。
// 文艺平衡树 fhp_Treap
// By YoungNeal
#include<ctime>
#include<cstdio>
#include<cstdlib>
#define N 100005 int Root;
int lazy[N];
int n,m,cnt;
int val[N],sze[N];
int ch[N][],prio[N]; void pushup(int o){
sze[o]=sze[ch[o][]]+sze[ch[o][]]+;
} void pushdown(int o){
if(!lazy[o] or !o) return;
ch[o][]^=ch[o][]^=ch[o][]^=ch[o][];
lazy[ch[o][]]^=;
lazy[ch[o][]]^=;
lazy[o]=;
} void split(int o,int k,int &x,int &y){
if(!o) x=y=;
else{
pushdown(o);
if(k>sze[ch[o][]]) x=o,split(ch[o][],k-sze[ch[o][]]-,ch[o][],y);
else y=o,split(ch[o][],k,x,ch[o][]);
pushup(o);
}
} int merge(int x,int y){
if(!x or !y) return x+y;
pushdown(x); pushdown(y);
if(prio[x]<prio[y]){
ch[x][]=merge(ch[x][],y);
pushup(x);
return x;
}
else{
ch[y][]=merge(x,ch[y][]);
pushup(y);
return y;
}
} int newnode(int v){
val[++cnt]=v;
sze[cnt]=;
prio[cnt]=rand();
return cnt;
} void res(int l,int r){
int a,b,c,d;
split(Root,r,a,b);
split(a,l-,c,d);
lazy[d]^=;
Root=merge(merge(c,d),b);
} void dfs(int now){
if(!now) return;
pushdown(now);
dfs(ch[now][]);
printf("%d ",val[now]);
dfs(ch[now][]);
} signed main(){
srand(time());
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
Root=merge(Root,newnode(i));
//printf("Root=%d\n",Root);
for(int x,y,i=;i<=m;i++){
scanf("%d%d",&x,&y);
res(x,y);
//printf("i=%d\n",i);
//dfs(Root);
}
//printf("Root=%d\n",Root);
dfs(Root);
return ;
}
[总结] fhq_Treap 学习笔记的更多相关文章
- fhq_treap 学习笔记
前言:昨天写NOIp2017队列,写+调辗转了3h+,不知道怎么的,就点进了一个神仙的链接,便在今日学习了神仙的fhq_treap. 简介:fhq_treap功能强大,支持splay支持的所有操作,代 ...
- Treap与fhq_Treap学习笔记
1.普通Treap 通过左右旋来维护堆的性质 左右旋是不改变中序遍历的 #include<algorithm> #include<iostream> #include<c ...
- js学习笔记:webpack基础入门(一)
之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...
- PHP-自定义模板-学习笔记
1. 开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2. 整体架构图 ...
- PHP-会员登录与注册例子解析-学习笔记
1.开始 最近开始学习李炎恢老师的<PHP第二季度视频>中的“章节5:使用OOP注册会员”,做一个学习笔记,通过绘制基本页面流程和UML类图,来对加深理解. 2.基本页面流程 3.通过UM ...
- 2014年暑假c#学习笔记目录
2014年暑假c#学习笔记 一.C#编程基础 1. c#编程基础之枚举 2. c#编程基础之函数可变参数 3. c#编程基础之字符串基础 4. c#编程基础之字符串函数 5.c#编程基础之ref.ou ...
- JAVA GUI编程学习笔记目录
2014年暑假JAVA GUI编程学习笔记目录 1.JAVA之GUI编程概述 2.JAVA之GUI编程布局 3.JAVA之GUI编程Frame窗口 4.JAVA之GUI编程事件监听机制 5.JAVA之 ...
- seaJs学习笔记2 – seaJs组建库的使用
原文地址:seaJs学习笔记2 – seaJs组建库的使用 我觉得学习新东西并不是会使用它就够了的,会使用仅仅代表你看懂了,理解了,二不代表你深入了,彻悟了它的精髓. 所以不断的学习将是源源不断. 最 ...
- CSS学习笔记
CSS学习笔记 2016年12月15日整理 CSS基础 Chapter1 在console输入escape("宋体") ENTER 就会出现unicode编码 显示"%u ...
随机推荐
- Windows10下的docker安装与入门 (二)使用docker引擎在容器中运行镜像
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...
- Django快速入门
Django 是用 Python 写的一个自由和开放源码 web 应用程序框架.web框架是一套组件,能帮助你更快.更容易地开发web站点.当你开始构建一个web站点时,你总需要一些相似的组件:处理用 ...
- Java-Maven(四):Eclipse集成Maven环境配置
一般maven都需要集成到IDE上使用的,而不是单独的使用,常见的maven可集成IDE:eclipse.IntelliJ IDEA.但这里就只学习eclipse集成maven的基础上,进行maven ...
- 音频增益响度分析 ReplayGain 附完整C代码示例
人们所熟知的图像方面的3A算法有: AF自动对焦(Automatic Focus)自动对焦即调节摄像头焦距自动得到清晰的图像的过程 AE自动曝光(Automatic Exposure)自动曝光的是为了 ...
- windows使用Win32DiskImager安装树莓派系统
首先去 官网 下载一个树莓派镜像. 然后使用Win32DiskImager这个工具安装. 不过试了以下好像不管用. 然后网上有ubuntu安装树莓派操作系统的方法. 于是就想我要是装树莓派不会还得装一 ...
- web前端HTML基础
一.HTML介绍 HTML全称是(Hypertext Markup Language, HTML)又称为超级文本标记语言,它主要his一种用于创建网页的标记语言,在本质上是浏览器可以识别的规则,我们按 ...
- java基本数据类型的包装类
基本类型对应的包装类 byte(Byte).short(Short).int(Integer).long(Long).float(Float).double(Double).char(Characte ...
- SpringMVC 自定义类型转换器
先准备一个JavaBean(Employee) 一个Handler(SpringMVCTest) 一个converters(EmployeeConverter) 要实现的输入一个字符串转换成一个emp ...
- 计蒜客NOIP模拟赛(3) D1T2 信息传递
一个数据包在一个无向网络中传递.在时刻0,该数据包将依照特定的概率随机抵达网络中的某个节点.网络可以看做一张完全带权无向图,包含N个节点,若t时刻数据包在节点i,则在t+1时刻,数据包被传递到节点j的 ...
- 【luogu3384】【模板】树链剖分
省选被暴虐,成功爆0...顺便ditoly差点全省总分Rank1 orz..... 于是开始赶进度学新算法.... 然后决定开始学习树剖orz... 发现树剖很好用啊!!!! 然后做了模板题. 题目就 ...