数据结构与算法分析(c语言描述)第4章 P78

概念一:一棵树所有节点的深度和称为内部路径长

令D(N)为一棵有N节点的树的内部路径长么,即有D(1)=0,

设一棵树的左子树的内部路径长为D(i),则右子树的内部路径长为D(N-i-1)(右子树节点个数=N-左子树节点个数-根节点)

综上:

D(N)=D(i)+D(N-I-1)+N-1 (在原树内,左子树与右子树所有节点的深度+1,总共深度增加N-1)

如果所有子树大小都等可能出现(对于左子树或右子树来说,大小在0—N-1之间浮动,比如:左子树的大小最小为0,最大为N-1,这其中任何值都是等可能出现的

则D(i)与D(N-i-1)的平均内部路径长为(1/N)∑D(j) (上标=N-1,下标=0)

综上:

D(N)=(2/N)*∑D(j)+N-1

再根据p185页化简可得:D(N)=O(logN)

所以,二叉查找树所有节点的平均深度为O(logN)

由此引申可得二叉查找树Find的运行时间为O(logN),Insert,Delete操作的核心步骤皆为Find,所以,Find,Insert,Delete的平均运行时间为O(logN)

证明二叉查找树所有节点的平均深度为O(logN)的更多相关文章

  1. [javaSE] 数据结构(二叉查找树-插入节点)

    二叉查找树(Binary Search Tree),又被称为二叉搜索树,它是特殊的二叉树,左子树的节点值小于右子树的节点值. 定义二叉查找树 定义二叉树BSTree,它保护了二叉树的根节点BSTNod ...

  2. lintcode-87-删除二叉查找树的节点

    87-删除二叉查找树的节点 给定一棵具有不同节点值的二叉查找树,删除树中与给定值相同的节点.如果树中没有相同值的节点,就不做任何处理.你应该保证处理之后的树仍是二叉查找树. 样例 给出如下二叉查找树: ...

  3. 常见基本数据结构——树,二叉树,二叉查找树,AVL树

    常见数据结构——树 处理大量的数据时,链表的线性时间太慢了,不宜使用.在树的数据结构中,其大部分的运行时间平均为O(logN).并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界. 树的定 ...

  4. 树·二叉查找树ADT(二叉搜索树/排序树)

    1.定义 对于每个节点X,它的左子树中所有的项的值小于X的值,右子树所有项的值大于X的值. 如图:任意一个节点,都满足定义,其左子树的所有值小于它,右子树的所有值大于它. 2.平均深度 在大O模型中, ...

  5. 数据结构笔记--二叉查找树概述以及java代码实现

    一些概念: 二叉查找树的重要性质:对于树中的每一个节点X,它的左子树任一节点的值均小于X,右子树上任意节点的值均大于X. 二叉查找树是java的TreeSet和TreeMap类实现的基础. 由于树的递 ...

  6. 二叉查找树(一)之 图文解析 和 C语言的实现

    概要 本章先对二叉树的相关理论知识进行介绍,然后给出C语言的详细实现.关于二叉树的学习,需要说明的是:它并不难,不仅不难,而且它非常简单.初次接触树的时候,我也觉得它似乎很难:而之所产生这种感觉主要是 ...

  7. 数据结构和算法 – 9.二叉树和二叉查找树

      9.1.树的定义   9.2.二叉树 人们把每个节点最多拥有不超过两个子节点的树定义为二叉树.由于限制子节点的数量为 2,人们可以为插入数据.删除数据.以及在二叉树中查找数据编写有效的程序了. 在 ...

  8. 二叉查找树(二)之 C++的实现

    概要 上一章介绍了"二叉查找树的相关理论知识,并通过C语言实现了二叉查找树".这一章给出二叉查找树的C++版本.这里不再对树的相关概念进行介绍,若遇到不明白的概念,可以在上一章查找 ...

  9. 二叉查找树(三)之 Java的实现

    概要 在前面分别介绍了"二叉查找树的相关理论知识,然后给出了二叉查找树的C和C++实现版本".这一章写一写二叉查找树的Java实现版本. 目录 1. 二叉树查找树2. 二叉查找树的 ...

随机推荐

  1. php基础知识(三)---常用函数--2017-04-16

    常用函数如下:(红色为重点) 1.取字符串的长度 echo strlen("hello"); 2.echo strcmp("字符串1","字符串2&q ...

  2. delphi JPG图片 旋转 切边 缩放

    unit UCutFigure_JPG; //JPG 切图 interface uses Windows, Messages, SysUtils, Variants, Classes, Graphic ...

  3. ABAP调试

    ABAP 开发系列(02): ABAP Development Workbench 介绍(下)- ABAP 调试器 8. Debugger – ABAP 调试器 开发程序,调试器是必不可少的工具,而A ...

  4. 剑指Offer-按之字形顺序打印二叉树

    package Tree; import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue; /** * ...

  5. [Usaco 5.4] Telecowmunication

    Description 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流.这些机器用如下的方式发送电邮:如果存在一个由c台电脑组成的序列a1,a2,...,a(c), ...

  6. Mycat 配置说明(server.xml)

    server.xml 几乎保存了所有mycat需要的系统配置信息,包括 mycat 用户管理.DML权限管理等,其在代码内直接的映射类为SystemConfig 类. user 标签 该标签主要用于定 ...

  7. PHP 环境搭建篇

    0x01 PHP 简介 PHP 是一种流行的通用脚本语言, 特别适合 web 开发. 快速, 灵活, 务实, PHP 的所有东西, 从你的博客到世界上最流行的网站. 0x02 PHP环境要求 Tips ...

  8. kvm之四:从网上镜像安装虚拟机Centos6.8

    1.再加块硬盘,格式化挂载至新建目录/kvm2下 2.CentOS 6.8镜像地址 http://mirrors.163.com/centos/6.8/os/x86_64/ 3.配置安装参数,执行安装 ...

  9. CSS的盒子模型有哪些,区别是什么

    1)盒模型: 内容(content).填充(padding).边界(margin). 边框(border)   2)有两种, IE 盒子模型.标准 W3C 盒子模型:IE的content部分包含了 b ...

  10. java程序在没有java环境的电脑上执行的方法(关键词jar,exe)

    可以让你写的java程序在别人没有任何java配置以及环境的情况下执行 写好程序 在程序对应的package上右键->export->java->Runnable JAR file- ...