简单数论之整除&质因数分解&唯一分解定理
[整除]
若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除"。b叫做a的约数(或因数),a叫做b的倍数。
[质因数分解]
把一个正整数数分解成几个质数的幂相乘的形式叫做质因数分解。
e.g.
10=2*5
16=24
18=2*32
[唯一分解定理]
唯一分解定理(算术基本定理)可表述为:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积:
N=P1a1*P2a2*P3a3......Pnan
这里P1<P2<P3......<Pn且均为连续质数(如2,3,5,7,11......)。
[再谈整除]
有了质因数分解,我们再看整除。
e.g.
36/6=22*32/2*3=2(1)*3(1)=22-1*32-1=2*3=6
引用于洛谷2018 OI夏令营 - 普及组后期 PJ7-1 数学:简单数论与计数原理
如果m|n,那么n/m=2a1-b1*3a2-b2*5a3-b3...
此时当且仅当a1>=b1,a2>=b2...。因为一旦ax<bx,m/n就会出现分数。
这样我们就多了一种判断整除的方法:
只需对两个数m,n进行质因数分解,然后比较他们每一项的指数。如果m每一项的指数都大于等于n每一项的指数,那么m一定是n的倍数咯!
2019-02-05 15:45:29
简单数论之整除&质因数分解&唯一分解定理的更多相关文章
- Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...
- CF-1445 C - Division 数论,质因数,唯一分解定理
题意 给定一个 \(p (p\le 10^{18})\), 一个 \(q(q \le 10^9)\), 要找到一个最大的 \(x\) 满足: \(p \%x = 0\) \(q \% x \neq 0 ...
- Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】
Aladdin and the Flying Carpet (LightOJ - 1341)[简单数论][算术基本定理][分解质因数](未完成) 标签:入门讲座题解 数论 题目描述 It's said ...
- FZU 1075 分解素因子【数论/唯一分解定理/分解素因子裸模板】
[唯一分解定理]:https://www.cnblogs.com/mjtcn/p/6743624.html 假设x是一个正整数,它的值不超过65535(即1<x<=65535),请编写一个 ...
- B - Common Divisors (codeforces)数论算法基本定理,唯一分解定理模板
You are given an array aa consisting of nn integers. Your task is to say the number of such positive ...
- 数学概念——J - 数论,质因数分解
J - 数论,质因数分解 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit ...
- HDU3988-Harry Potter and the Hide Story(数论-质因数分解)
Harry Potter and the Hide Story Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 ...
- HDU-1215 七夕节 数论 唯一分解定理 求约数之和
题目链接:https://cn.vjudge.net/problem/HDU-1215 题意 中文题,自己去看吧,懒得写:) 思路 \[ Ans=\prod \sum p_i^j \] 唯一分解定理 ...
- AtCoder - 2286 (数论——唯一分解定理)
题意 求n!的因子数%1e9+7. 思路 由唯一分解定理,一个数可以拆成素数幂之积,即2^a * 3^b *……,n!=2*3*……*n,所以计算每个素因子在这些数中出现的总次数(直接对2~n素因子分 ...
随机推荐
- 版本控制工具——Git常用操作(上)
本文由云+社区发表 作者:工程师小熊 摘要:用了很久的Git和svn,由于总是眼高手低,没能静下心来写这些程序员日常开发最常用的知识点.现在准备开一个专题,专门来总结一下版本控制工具,让我们从git开 ...
- TypeScript|Angular踩坑笔记
今天按照Angular官网玩了下demo程序,踩了个小坑,记录下. TypeScript可以将变量申明为自定义类型,同时也不对该类型进行检查(不像C#,如果没有这个类型会报错) 比如下面这样: 如果我 ...
- JavaScript类型相关常用操作
JS数组,字符串,json互相转换 JS数组转字符串 使用数组自带的join方法可以把数组转化为字符串: let arr = [1,2,'uu']; let str = arr.join(','); ...
- k8s应用机密信息与配置管理(九)--技术流ken
secret 应用启动过程中可能需要一些敏感信息,比如访问数据库的用户名密码或者秘钥.将这些信息直接保存在容器镜像中显然不妥,Kubernetes 提供的解决方案是 Secret. Secret 会以 ...
- C#属性标记Order执行顺序备忘录
部分Attribute有实现IOrderedFilter,其执行顺序机制例子: /// <summary> /// 密码修改 /// </summary> /// <pa ...
- 在线生成二维码的API接口
现在很多大网站都有这样的一个功能,使用手机扫描一下网页上的二维码便可快速在手机上访问网站.想要实现这样的功能其实很简单,下面麦布分享几个在线生成网址二维码的API接口.都是采用http协议接口,无需下 ...
- 物联网RFID技术之应用ETC系统
背景 信息物理系统CPS通过集成先进的感知.计算.通 信.控制等信息技术和自动控制技术,构建了物理空间与信息空间中人. 机.物.环境.信息等要素相互映射.适时交互.高效协同的复杂系统, 实现系统内资源 ...
- 菜鸟之旅——学习线程(Task)
前面两篇回顾线程和线程池的使用方法,微软在.NET4.5推出了新的线程模型-Task.本篇将简单的介绍Task的使用方法. Task与线程 Task与线程或者说线程池关系紧密,可以说是基于线程池实现的 ...
- .NET redis cluster
一.下载Windows版本Redis 下载链接:https://github.com/MSOpenTech/redis/releases(根据系统选择对应版本) 二.修改默认的配置文件 如上图两个配置 ...
- javaweb + websocket实现客户端
最近需要完成一个javaweb项目,但是没有和数据库连接而是通过websocket通讯实现和服务器端数据交互.我搜了好多,网上大部分都是通过页面websocket连接本地服务器或连接异地服务器,但是这 ...
引用于洛谷2018 OI夏令营 - 普及组后期 PJ7-1 数学:简单数论与计数原理