这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHSK的博客,大神是山东省队队员,他的博客中的题的质量都比我高几个档次);

这是大神MagHSK的解释:因为10^9顶多开5~6次方就成了1了(当然这里的等于是向下取整的)因此对于修改操作,如果某一段不是1或不是0,就暴力修改,如果是1/0就不管他。修改完之后update一下就好了。

题目上说我们给出的是一个可修改(修改的规则就是对要修改的区间内每个数开平方)、可查询(就是求一段区间上所有数字的和)的一个数列。

显然我们直接暴力的效率是很低的,那么我们就采取了线段树——一种神奇的数据结构。

线段树作为可修改可查询的数据结构,基本操作就是点更新、区间更新和区间查询(包括最小值、最大值和区间和)这里因为是解题报告,所以就不跟大家讲基本思路了,直接进入正题,基本思路和代码板子请自己去看。

这里因为是对区间内的数开平方,所以区间更新就有点不大好用了(主要是没法直接标记区间然后开平方,这样会计算错误),然后数据范围也不算大,所以我们就考虑搜索线段树上的每一个在需要update(更新)的区间的所有点进行开方点更新,然后再push_up(往上面推,求出每个线段树上区间的和)上去。这样就可以完成更新任务了。(push_up和change(update)函数代码跟板子上不大一样,all数组就是标记这个区间内的数还值不值得进行开平方操作,显然如果这个区间内的和为1或者0的时候就不用开平方了,change的时候就可以省略了)。

区间查询的操作就是套板子,这个没什么需要思考的。

还是那句老话,要先考虑自己写,然后实在不会了再看题解,总是copy别人的代码自己的水平肯定上升得很慢。

废话不再说,上代码。

 #include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL;
const int INF = ;
int n;
LL sum[], A[];
bool all[];
void pu(int now) {
sum[now] = sum[now << ] + sum[now << | ];
all[now] = all[now << ] && all[now << | ];
}
void build(int now, int l, int r) {
if (l == r) {
sum[now] = A[l];
if (sum[now] == || sum[now] == )
all[now] = true;
return;
}
int mid = (l + r) >> ;
build(now << , l, mid);
build(now << | , mid + , r);
pu(now);
}
LL query(int now, int l, int r, int ll, int rr) {
if (ll <= l && r <= rr) {
return sum[now];
}
int mid = (l + r) >> ;
LL ret = ;
if (ll <= mid) ret += query(now << , l, mid, ll, rr);
if (rr > mid) ret += query(now << | , mid + , r, ll, rr);
return ret;
}
void change(int now, int l, int r, int ll, int rr) {
if (all[now]) {
return;
}
if (l == r) {
sum[now] = sqrt(sum[now]);
if (sum[now] == || sum[now] == )
all[now] = true;
return;
}
int mid = (l + r) >> ;
if (ll <= mid) change(now << , l, mid, ll, rr);
if (rr > mid) change(now << | , mid + , r, ll, rr);
pu(now);
}
int main() {
scanf("%d", &n);
for (int i = ; i <= n; ++i)
scanf("%lld", A+i);
build(, , n);
int m, x, y, z;
scanf("%d", &m);
while (m--) {
scanf("%d%d%d", &x, &y, &z);
if (y > z) swap(y, z);
if (x==) {
printf("%lld\n", query(, , n, y, z));
} else {
change(, , n, y, z);
}
}
return ;
}

这次解题报告就完结啦,蒟蒻一般是在每周的星期三晚和星期天晚发解题报告,大家就不要在其他时间翻我的博客啦。

习题: codevs 2492 上帝造题的七分钟2 解题报告的更多相关文章

  1. Codevs 2492 上帝造题的七分钟 2(线段树)

    时间限制: 1 s 空间限制: 64000 KB 题目等级 : 大师 Master 题目描述 Description XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. " ...

  2. C++之路进阶——codevs2492(上帝造题的七分钟 2)

    2492 上帝造题的七分钟 2  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 大师 Master    题目描述 Description XLk觉得<上帝造题的七分钟&g ...

  3. codevs2492 上帝造题的七分钟 2

    2492 上帝造题的七分钟 2 题目描述 Description XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. "第一分钟,X说,要有数列,于是便给定了一个正整数数列 ...

  4. 【BZOJ3211&3038】花神游历各国&上帝造题的七分钟2(CodeVS)

    Description   Input   Output 每次x=1时,每行一个整数,表示这次旅行的开心度 Sample Input 4 1 100 5 5 5 1 1 2 2 1 2 1 1 2 2 ...

  5. 【BZOJ】3038: 上帝造题的七分钟2(线段树+暴力)

    http://www.lydsy.com:808/JudgeOnline/problem.php?id=3038 这题我就有得吐槽了,先是线段树更新写错,然后不知哪没pushup导致te,精度问题sq ...

  6. BZOJ3132: 上帝造题的七分钟

    3132: 上帝造题的七分钟 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 483  Solved: 222[Submit][Status] Desc ...

  7. tyvj P1716 - 上帝造题的七分钟 二维树状数组区间查询及修改 二维线段树

    P1716 - 上帝造题的七分钟 From Riatre    Normal (OI)总时限:50s    内存限制:128MB    代码长度限制:64KB 背景 Background 裸体就意味着 ...

  8. 「Poetize4」上帝造题的七分钟2

    描述 Description "第一分钟,X说,要有数列,于是便给定了一个正整数数列.第二分钟,L说,要能修改,于是便有了对一段数中每个数都开平方(下取整)的操作.第三分钟,k说,要能查询, ...

  9. bzoj3038 上帝造题的七分钟2

    Description XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对 ...

随机推荐

  1. 优化与扩展Mybatis的SqlMapper解析

    接上一篇博文,这一篇来讲述怎么实现SchemaSqlMapperParserDelegate——解析SqlMapper配置文件. 要想实现SqlMapper文件的解析,还需要仔细分析一下mybatis ...

  2. HTML网页内容转换成字符串(删除从指定字符串到指定字符串)

    背景: 最近遇到个小需求就是将下面字符串去掉无用字符串 <br><br>"你爷爷也喜欢吃鱼嘛."<br><br>我笑了起来,&quo ...

  3. 查看 table,view,sp的定义

    1, 查看用户创建的Proc,View, UDF,trigger 的定义 sys.sql_modules Returns a row for each object that is an SQL la ...

  4. 微信开发 -- 搭建基于ngrok的微信本地调试环境

    第一步,安装ngrok客户端 (1)首先先到官网下载个客户端 http://natapp.cn/,选择适合的客户端类型,本人选择的是windows版 (2)下载后,解压,可以看到如下目录: 第二步,开 ...

  5. Oracle 11gR2静默安装 & 命令行安装

    静默安装 经常搭建Oracle测试环境,有时候觉得OUI(即图形界面)方式甚是繁琐,你得一步一步进行确认,所幸,Oracle支持静默安装.在我看来,它主要有两方面的好处:一.极大地提升了效率,尤其是批 ...

  6. Visual Studio 2010安装教程

    VS2010是一个集C++,VB,C#,等编程环境于一身的集成开发环境,功能强大,能有效提高编程效率.针对 Visual Studio 2010 完全重新设计了帮助查看器.您可以使用首选的 Web 浏 ...

  7. 动态单链表的传统存储方式和10种常见操作-C语言实现

    顺序线性表的优点:方便存取(随机的),特点是物理位置和逻辑为主都是连续的(相邻).但是也有不足,比如:前面的插入和删除算法,需要移动大量元素,浪费时间,那么链式线性表 (简称链表) 就能解决这个问题. ...

  8. [转载]"百度方法+"案例—从持续集成到持续交付

    前言 百度开放云(https://bce.baidu.com)是百度基于十五年基础架构核心技术积累推出的云服务,目前推出了14个云计算产品和9个大数据产品,并提供数字营销云.在线教育.物联网等10种解 ...

  9. C++笔记(3):一些C++的基础知识点

     前言: 找工作需要,最近看了下一些C++的基本概念,为范磊的<零起点学通C++>,以下是一些笔记. 内容: delete p;只是删除指针p指向内存区,并不是删除指针p,所以p还是可以用 ...

  10. Android Studio1.4.x JNI开发基础 - 简单实例

    接上一篇,搭建好基于Android Studio的环境之后,编写native代码相对来说也比较简单了.在Android上编写Native代码和在Linux编写C/C++代码还是有区别,Native代码 ...