跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了。那么就是卡特兰数了。然后由于n和m太大所以用了lucas定理

//跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了。那么就是卡特兰数了。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int mod=10007;
int fac[mod],inv[mod];
ll pow(ll x,int n){
ll ans=x;n--;
while(n){
if(n&1) ans=ans*x%mod;
x=x*x%mod;n>>=1;
}
return ans;
}
int get(int n,int m){
if(n<m) return 0;
if(n<mod&&m<mod) return fac[n]*inv[m]%mod*inv[n-m]%mod;
return get(n/mod,m/mod)*get(n%mod,m%mod)%mod;
}
int main(){
fac[0]=1;
rep(i,1,mod-1) fac[i]=fac[i-1]*i%mod;
inv[1]=1;
rep(i,2,mod-1) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
inv[0]=1;
rep(i,1,mod-1) inv[i]=inv[i]*inv[i-1]%mod;
int n=read()-1;
printf("%d\n",get(2*n,n)*2*pow(n+1,mod-2)%mod);
return 0;
}

  

基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注
N * N的方格,从左上到右下画一条线。一个机器人从左上走到右下,只能向右或向下走。并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果。

 
Input
输入一个数N(2 <= N <= 10^9)。
Output
输出走法的数量 Mod 10007。
Input示例
4
Output示例
10

51nod1120 机器人走方格 V3的更多相关文章

  1. 机器人走方格 V3

    1120 . 机器人走方格 V3   基准时间限制:1 秒 空间限制:65536 KB 分值: 160 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在 ...

  2. 51nod 1120 机器人走方格V3

    1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...

  3. 1120 机器人走方格 V3

    1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走, ...

  4. 51nod 1120 机器人走方格 V3 卡特兰数 lucas定理

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 100 ...

  5. 51nod 1120 机器人走方格 V3

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 1 ...

  6. 1120 机器人走方格 V3(组合数)

    题目实际上是求catalan数的,Catalan[n] = C(2*n,n) / (n+1) = C(2*n,n) % mod * inv[n+1],inv[n+1]为n+1的逆元,根据费马小定理,可 ...

  7. 51nod_1120:机器人走方格 V3

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 Catalan数 基础题,ans=C(2n-2,n-2 ...

  8. 51Nod 机器人走方格 V3 —— 卡特兰数、Lucas定理

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 题解: 1.看到这种题,马上就想到了卡特兰数.但卡特兰数 ...

  9. 51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】

    -我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡 ...

随机推荐

  1. 各大Oj平台介绍

    1.题库与网站资源题库-在线提交系统(Online Judge)简介   下面是几个比较大的在线提交系统(OnlineJudge)里面有大量历年的竞赛题目,注册一个ID,然后用自己熟悉的语言(一般有P ...

  2. 高达渐出现效果Shader

    原地址: http://liweizhaolili.blog.163.com/blog/static/1623074420140591864/ 最近在玩游戏<高达破坏者>,里面的高达出现的 ...

  3. Ext Js学习之IIS理解

    站点分为静态网站和动态网站,纯粹利用html编写的网站属于静态网站,不宜维护和更新而利用C#+extjs等前台+后台技术编写的网站就属于动态站点,有更多的交互,易维护和更新,比如降价的页面,利用htm ...

  4. 采用Asp.Net的Forms身份验证时,持久Cookie的过期时间会自动扩展

    原文:http://www.cnblogs.com/sanshi/archive/2012/06/22/2558476.html 若是持久Cookie,Cookie的有效期Expiration属性有当 ...

  5. ASP.NET Excel 导入 Oracle 方法2

    先谈思路:前半部分和之前那篇日志的内容是一样的,把Excel数据导入到DataSet中,不同之处在于数据插入的方式: 本方法是拼接 INSERT INTO TABLE VALUES() 字符串,对,就 ...

  6. LA 3713

    The Bandulu Space Agency (BSA) has plans for the following three space missions: Mission A: Landing ...

  7. Light OJ 1364 Expected Cards (期望dp,好题)

    题目自己看吧,不想赘述. 参考链接:http://www.cnblogs.com/jianglangcaijin/archive/2013/01/02/2842389.html #include &l ...

  8. ngrok本地反向代理

    ngrok本地反向代理 ngrok本地反向代理 使用ngrok可以把内网服务映射到外网 国内ngrok服务配置如下 在ngrok.exe所在的目录下添加ngrok.cfg文件 ngrok.cfg文件内 ...

  9. mq_unlink

    NAME mq_unlink - 销毁一个消息队列 (REALTIME) SYNOPSIS #include <mqueue.h> int mq_unlink(const char *na ...

  10. grep是模糊匹配

    1. 我:我用的ps -nat|grep -i "80"|wc -l命令 我:解释详细点,,龙哥,对于我这种菜鸟:也是模糊匹配 :你用 grep "80" 会匹 ...