跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了。那么就是卡特兰数了。然后由于n和m太大所以用了lucas定理

//跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了。那么就是卡特兰数了。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int mod=10007;
int fac[mod],inv[mod];
ll pow(ll x,int n){
ll ans=x;n--;
while(n){
if(n&1) ans=ans*x%mod;
x=x*x%mod;n>>=1;
}
return ans;
}
int get(int n,int m){
if(n<m) return 0;
if(n<mod&&m<mod) return fac[n]*inv[m]%mod*inv[n-m]%mod;
return get(n/mod,m/mod)*get(n%mod,m%mod)%mod;
}
int main(){
fac[0]=1;
rep(i,1,mod-1) fac[i]=fac[i-1]*i%mod;
inv[1]=1;
rep(i,2,mod-1) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
inv[0]=1;
rep(i,1,mod-1) inv[i]=inv[i]*inv[i-1]%mod;
int n=read()-1;
printf("%d\n",get(2*n,n)*2*pow(n+1,mod-2)%mod);
return 0;
}

  

基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注
N * N的方格,从左上到右下画一条线。一个机器人从左上走到右下,只能向右或向下走。并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果。

 
Input
输入一个数N(2 <= N <= 10^9)。
Output
输出走法的数量 Mod 10007。
Input示例
4
Output示例
10

51nod1120 机器人走方格 V3的更多相关文章

  1. 机器人走方格 V3

    1120 . 机器人走方格 V3   基准时间限制:1 秒 空间限制:65536 KB 分值: 160 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在 ...

  2. 51nod 1120 机器人走方格V3

    1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...

  3. 1120 机器人走方格 V3

    1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走, ...

  4. 51nod 1120 机器人走方格 V3 卡特兰数 lucas定理

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 100 ...

  5. 51nod 1120 机器人走方格 V3

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 1 ...

  6. 1120 机器人走方格 V3(组合数)

    题目实际上是求catalan数的,Catalan[n] = C(2*n,n) / (n+1) = C(2*n,n) % mod * inv[n+1],inv[n+1]为n+1的逆元,根据费马小定理,可 ...

  7. 51nod_1120:机器人走方格 V3

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 Catalan数 基础题,ans=C(2n-2,n-2 ...

  8. 51Nod 机器人走方格 V3 —— 卡特兰数、Lucas定理

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 题解: 1.看到这种题,马上就想到了卡特兰数.但卡特兰数 ...

  9. 51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】

    -我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡 ...

随机推荐

  1. DOS系统功能调用表(INT 21H)

    AH 功能 调用参数 返回参数 00 程序终止(同INT 20H) CS=程序段前缀 01 键盘输入并回显 AL=输入字符 02 显示输出 DL=输出字符 03 异步通迅输入 AL=输入数据 04 异 ...

  2. eclipse git 整合

    最近朋友都推荐使用github管理自己的项目,而且免费用户可以有5个仓库,恰好我也想了解下git,借此机会学习一下.github官方指南使用独立第三方git工具来进行版本控制,并不借助于eclipse ...

  3. httpClient多线程请求

    使用httpClient可模拟请求Url获取资源,使用单线程的请求速度上会有一定的限制,参考了Apache给出的例子,自己做了测试实现多线程并发请求,以下代码需要HttpClient 4.2的包,可以 ...

  4. 在iptables防火墙下开启vsftpd的端口

    在开启vsftpd端口后发现用客户端工具能登陆,但无法浏览文件和新建文件.此时看了一下ftp的协议,发现ftp有主动模式和被动模式.在服务端开21端口是让客户端进来,并没有出去的端口,还在服务端开启出 ...

  5. C#&java重学笔记(泛型)

    C#部分: 1.泛型的出现主要用于解决类.接口.委托.方法的通用性,通过定义泛型类.接口.委托.方法,可以让不同类型的数据使用相同运算规则处理数据,方便了开发. 2.利用System.Nullable ...

  6. 运行时修改TimerTask的执行周期

    java.util.TimerTask类的执行周期period变量的声明如下: /** * Period in milliseconds for repeating tasks. A positive ...

  7. POJ 1006 Biorhythms (中国剩余定理)

    在POJ上有译文(原文右上角),选择语言:简体中文 求解同余方程组:x=ai(mod mi) i=1~r, m1,m2,...,mr互质利用中国剩余定理令M=m1*m2*...*mr,Mi=M/mi因 ...

  8. C# 工厂

    /// <summary> /// 创造实例 /// </summary> /// <typeparam name="T">类型</typ ...

  9. 2014多校第七场1003 || HDU 4937 Lucky Number

    题目链接 题意 : 给定一个十进制n,让你转化成某个进制的数,让这个数只包含3 4 5 6这些数字,这个进制就成为n的幸运数字,输出有多少幸运数字,例如19,5进制表示是34,所以5是19的一个幸运数 ...

  10. ExtJs之Panel基本布局

    <!DOCTYPE html> <html> <head> <title>ExtJs</title> <meta http-equiv ...