(from:http://en.wikipedia.org/wiki/Mahalanobis_distance)

Mahalanobis distance

In statisticsMahalanobis distance is a distance measure introduced by P. C. Mahalanobis in 1936.It is based on correlations between variables by which different patterns can be identified and analyzed. It gauges similarity of an unknown sample set to a known one. It differs fromEuclidean distance in that it takes into account the correlations of the data set and is scale-invariant. In other words, it is a multivariateeffect size.

Definition

Formally, the Mahalanobis distance of a multivariate vector  from a group of values with mean  and covariance matrix  is defined as:

(注:1.这个是X和总体均值的马氏距离。2.这里的S是可逆的,那么协方差矩阵不可逆的话怎么办?)

Mahalanobis distance (or "generalized squared interpoint distance" for its squared value) can also be defined as a dissimilarity measure between two random vectors  and  of the same distribution with the covariance matrix  :

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called the normalized Euclidean distance:

where  is the standard deviation of the  ( ) over the sample set.

(源自:百度百科)

马氏优缺点:

1.马氏距离的计算是建立在总体样本的基础上的,这一点可以从上述协方差矩阵的解释中可以得出,也就是说,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同。
 
2.在计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧式距离计算即可。
 
3.还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如三个样本点(3,4),(5,6)和(7,8)这种情况是因为这三个样本在其所处的二维空间平面内共线。这种情况下,也采用欧式距离计算。
 
4.在实际应用中“总体样本数大于样本的维数”这个条件是很容易满足的,而所有样本点出现3)中所描述的情况是很少出现的,所以在绝大多数情况下,马氏距离是可以顺利计算的,但是马氏距离的计算是不稳定的,不稳定的来源是协方差矩阵,这也是马氏距离与欧式距离的最大差异之处。
   
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。
 
缺点:它的缺点是夸大了变化微小的变量的作用。

Mahalanobis Distance(马氏距离)的更多相关文章

  1. paper 114:Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  2. Mahalanobia Distance(马氏距离)的解释

    马氏距离有多重定义: 1)可以表示 某一个样本与DataSet的距离. 2)可以表示两个DataSet之间的距离. 1) The Mahalanobis distance of an observat ...

  3. 马氏距离(Mahalanobis distance)

    马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离.它是一种有效的计算两个未知样本集的相似度的方法.与欧 ...

  4. MATLAB求马氏距离(Mahalanobis distance)

    MATLAB求马氏距离(Mahalanobis distance) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.马氏距离计算公式 d2(xi,  ...

  5. Mahalanobis距离(马氏距离)的“哲学”解释

    讲解教授:赵辉 (FROM : UESTC) 课程:<模式识别> 整理:PO主 基础知识: 假设空间中两点x,y,定义: 欧几里得距离, Mahalanobis距离, 不难发现,如果去掉马 ...

  6. 有关马氏距离和hinge loss的学习记录

    关于度量学习,之前没有看太多相关的文献.不过南京的周老师的一篇NIPS,确实把这个问题剖析得比较清楚. Mahalanobis距离一般表示为d=(x-y)TM(x-y),其中x和y是空间中两个样本点, ...

  7. 基于欧氏距离和马氏距离的异常点检测—matlab实现

    前几天接的一个小项目,基于欧氏距离和马氏距离的异常点检测,已经交接完毕,现在把代码公开. 基于欧式距离的: load data1.txt %导入数据,行为样本,列为特征 X=data1; %赋值给X ...

  8. Python实现的计算马氏距离算法示例

    Python实现的计算马氏距离算法示例 本文实例讲述了Python实现的计算马氏距离算法.分享给大家供大家参考,具体如下: 我给写成函数调用了 python实现马氏距离源代码:     # encod ...

  9. Levenshtein Distance莱文斯坦距离算法来计算字符串的相似度

    Levenshtein Distance莱文斯坦距离定义: 数学上,两个字符串a.b之间的莱文斯坦距离表示为levab(|a|, |b|). levab(i, j) = max(i, j)  如果mi ...

随机推荐

  1. pycharm Working directory error

    /***************************************************************************** * pycharm Working dir ...

  2. Mac下配置环境变量

    1.创建并以 TextEdit 的方式打开 ~/.bash_profile 文件,如果没有则 touch ~/.bash_profile; 然后打开 vim ~/.bash_profile 2.新增环 ...

  3. unity, 颜色随高度渐变shader

    一,颜色随世界空间高度渐变. Shader "Custom/heightGradual_worldSpace" {    Properties {        _Color (& ...

  4. 详解MySQL三项实用开发知识

    其实项目应用的瓶颈还是在db端,在只有少量数据及极少并发的情况下,并不需要多少的技巧就可以得到我们想要的结果,但是当数据量达到一定量级的时 候,程序的每一个细节,数据库的设计都会影响到系统的性能.这里 ...

  5. java 调用 .net webservice

    1.首先下载Axis2工具包 2.解压之后用cmd命令进入bin目录WSDL2Java.bat -uri http://192.168.20.42:9999/LoginService.asmx?wsd ...

  6. 对JAVA集合进行遍历删除时务必要用迭代器

    java集合遍历删除的方法: 1.当然这种情况也是容易解决,实现方式就是讲遍历与移除操作分离,即在遍历的过程中,将需要移除的数据存放在另外一个集合当中,遍历结束之后,统一移除. 2.使用Iterato ...

  7. 请教下 Yii 和 Ajax来验证用户名是否存在

    添加一个 Custom, Model页面: CustomForm中: public function rules() { // 使用ajax 校验数据 return array( array('nam ...

  8. Yii系列教程(四):使用Memcache保存会话

    1环境准备 安装Memcached服务端: yum -y installmemcached.x86_64 安装PHP-Memcache扩展: yum -y installphp-pecl-memcac ...

  9. WebGoat学习——跨站请求伪造(Cross Site Request Forgery (CSRF))

    跨站请求伪造(Cross Site Request Forgery (CSRF)) 跨站请求伪造(Cross Site Request Forgery (CSRF))也被称为:one click at ...

  10. visual assistent 过期

    VA功能超级好使,下载的一般都有时间限制,但又不想买正版. 我的是32位系统 vs2008: 将VA_X.dll文件拷到 (x86)C:\Program Files\Visual Assist X\ ...