tensorflow 模型不兼容
[ERROR] [1533570199.196157]: bad callback: <bound method TLDetector.image_cb of <__main__.TLDetector object at 0x7f1fda105450>>
Traceback (most recent call last):
File "/opt/ros/kinetic/lib/python2.7/dist-packages/rospy/topics.py", line 750, in _invoke_callback
cb(msg)
File "/home/novak/Carnd3/wow-now/ros/src/tl_detector/tl_detector.py", line 148, in image_cb
light_wp, state = self.process_traffic_lights()
File "/home/novak/Carnd3/wow-now/ros/src/tl_detector/tl_detector.py", line 317, in process_traffic_lights
state = self.get_light_state(light)
File "/home/novak/Carnd3/wow-now/ros/src/tl_detector/tl_detector.py", line 275, in get_light_state
return self.light_classifier.get_classification(cv_image)
File "/home/novak/Carnd3/wow-now/ros/src/tl_detector/light_classification/tl_classifier.py", line 69, in get_classification
feed_dict={self.image_tensor: image_exp})
File "/home/novak/tensorflow1.3/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 895, in run
run_metadata_ptr)
File "/home/novak/tensorflow1.3/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1124, in _run
feed_dict_tensor, options, run_metadata)
File "/home/novak/tensorflow1.3/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1321, in _do_run
options, run_metadata)
File "/home/novak/tensorflow1.3/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1340, in _do_call
raise type(e)(node_def, op, message)
InvalidArgumentError: NodeDef mentions attr 'identical_element_shapes' not in Op<name=TensorArrayV3; signature=size:int32 -> handle:resource, flow:float; attr=dtype:type; attr=element_shape:shape,default=<unknown>; attr=dynamic_size:bool,default=false; attr=clear_after_read:bool,default=true; attr=tensor_array_name:string,default=""; is_stateful=true>; NodeDef: Preprocessor/map/TensorArray = TensorArrayV3[clear_after_read=true, dtype=DT_FLOAT, dynamic_size=false, element_shape=<unknown>, identical_element_shapes=true, tensor_array_name="", _device="/job:localhost/replica:0/task:0/cpu:0"](Preprocessor/map/strided_slice). (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.).
[[Node: Preprocessor/map/TensorArray = TensorArrayV3[clear_after_read=true, dtype=DT_FLOAT, dynamic_size=false, element_shape=<unknown>, identical_element_shapes=true, tensor_array_name="", _device="/job:localhost/replica:0/task:0/cpu:0"](Preprocessor/map/strided_slice)]]
Caused by op u'Preprocessor/map/TensorArray', defined at:
File "/home/novak/Carnd3/wow-now/ros/src/tl_detector/tl_detector.py", line 327, in <module>
TLDetector()
File "/home/novak/Carnd3/wow-now/ros/src/tl_detector/tl_detector.py", line 67, in __init__
self.light_classifier = TLClassifier(self.usingSimulator)
File "/home/novak/Carnd3/wow-now/ros/src/tl_detector/light_classification/tl_classifier.py", line 35, in __init__
tf.import_graph_def(od_graph_def, name='')
File "/home/novak/tensorflow1.3/local/lib/python2.7/site-packages/tensorflow/python/framework/importer.py", line 313, in import_graph_def
op_def=op_def)
File "/home/novak/tensorflow1.3/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2630, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/novak/tensorflow1.3/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1204, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): NodeDef mentions attr 'identical_element_shapes' not in Op<name=TensorArrayV3; signature=size:int32 -> handle:resource, flow:float; attr=dtype:type; attr=element_shape:shape,default=<unknown>; attr=dynamic_size:bool,default=false; attr=clear_after_read:bool,default=true; attr=tensor_array_name:string,default=""; is_stateful=true>; NodeDef: Preprocessor/map/TensorArray = TensorArrayV3[clear_after_read=true, dtype=DT_FLOAT, dynamic_size=false, element_shape=<unknown>, identical_element_shapes=true, tensor_array_name="", _device="/job:localhost/replica:0/task:0/cpu:0"](Preprocessor/map/strided_slice). (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.).
[[Node: Preprocessor/map/TensorArray = TensorArrayV3[clear_after_read=true, dtype=DT_FLOAT, dynamic_size=false, element_shape=<unknown>, identical_element_shapes=true, tensor_array_name="", _device="/job:localhost/replica:0/task:0/cpu:0"](Preprocessor/map/strided_slice)]]
tensorflow 模型不兼容的更多相关文章
- TensorFlow 模型优化工具包 — 训练后整型量化
模型优化工具包是一套先进的技术工具包,可协助新手和高级开发者优化待部署和执行的机器学习模型.自推出该工具包以来, 我们一直努力降低机器学习模型量化的复杂性 (https://www.tensorfl ...
- [翻译] Tensorflow模型的保存与恢复
翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ ...
- Tensorflow模型的格式
转载:https://cloud.tencent.com/developer/article/1009979 tensorflow模型的格式通常支持多种,主要有CheckPoint(*.ckpt).G ...
- 移动端目标识别(1)——使用TensorFlow Lite将tensorflow模型部署到移动端(ssd)之TensorFlow Lite简介
平时工作就是做深度学习,但是深度学习没有落地就是比较虚,目前在移动端或嵌入式端应用的比较实际,也了解到目前主要有 caffe2,腾讯ncnn,tensorflow,因为工作用tensorflow比较多 ...
- 移动端目标识别(2)——使用TENSORFLOW LITE将TENSORFLOW模型部署到移动端(SSD)之TF Lite Developer Guide
TF Lite开发人员指南 目录: 1 选择一个模型 使用一个预训练模型 使用自己的数据集重新训练inception-V3,MovileNet 训练自己的模型 2 转换模型格式 转换tf.GraphD ...
- 搭建 MobileNet-SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型
原文地址:搭建 MobileNet-SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型 0x00 环境 OS: Ubuntu 1810 x64 Anaconda: 4.6.12 P ...
- tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...
- AI tensorflow模型文件
tensorflow模型可以利用tf.train.Saver类保存成文件.一个模型包含下面四个文件. meta文件 存储计算图的protobuf. data-00000-of-00001文件和inde ...
- 构建分布式Tensorflow模型系列:CVR预估之ESMM
https://zhuanlan.zhihu.com/p/42214716 本文是“基于Tensorflow高阶API构建大规模分布式深度学习模型系列”的第五篇,旨在通过一个完整的案例巩固一下前面几篇 ...
随机推荐
- [转] docker save与docker export的区别
[From]http://cnodejs.org/topic/59a2304f7aeedce818249eeb 很久没有写博客了,坟头草都长了老高了.写博客要靠惯性,一旦停下来时间长了,就很难再坚持下 ...
- [转] 【译】让人倾倒的 11 个 npm trick
[From] https://segmentfault.com/a/1190000006804410 本文转载自:众成翻译译者:文蔺链接:http://www.zcfy.cc/article/1206 ...
- drf(djangorestframework)
一.django restful_framework 核心思想: 缩减编写api接口的代码 Django REST framework是一个建立在Django基础之上的Web 应用开发框架,可以快速的 ...
- 在Linux系统中,使用useradd命令新建用户后,登录该用户时shell开头为$,不显示用户名和路径,如下:
在~/.bash_profile中加入以下代码,若无该文件可自行创建: vi ~/.bash_profile #加入 #export PS1='[u@h W]$' 大写W代表最后路径,小写w代表详细路 ...
- 文献综述八:基于JAVA的商品网站的研究
一.基本信息 标题:基于JAVA的商品网站的研究 时间:2015 出版源:信息技术 文件分类:对java语言的研究 二.研究背景 本文主要介绍了系统的分析,设计和开发的全部过程. 三.具体内容 文献的 ...
- myEclipse注册码地址2019年最新
myEclipse注册码地址2019年最新 https://www.sojson.com/myeclipse8.5/
- spark ALS 推荐算法参数说明
- python 爬虫系列03--职位爬虫
职位爬虫 import requests from lxml import etree cookie = { 'Cookie':'user_trace_token=20181015184304-692 ...
- 依赖倒置(Dependence Inversion Principle)DIP
关于抽象类和接口的区别,可以参考之前的文章~http://www.cnblogs.com/leestar54/p/4593173.html using System; using System.Col ...
- 一些Andoid studio常用的快捷键
常用快捷键 Android Studio是基于IntelliJ IDEA的,我们都知道,IDEA是一个很方便很好用的IDE,其中有许多快捷键,但是太多快捷键我们也记不住. 其实,我们可以记住几个 ...