zoj3988
zoj3988
题意
如果一个集合 \(\{i,j\}\) 满足 \(i\neq j\) 且 \(a[i]+a[j]\) 是素数,则称之为素数集合。
给出一些数字,这些数字可以组成多种素数集合,从这些集合中最多选择 \(k\) 个集合,问这些集合涉及到的数的数量最大值为多少。
分析
存在匹配关系即 \(a[i]+a[j]\) 是素数,那么 \(i\) \(j\) 就可以连边,要求两个数的和为素数,那么这两个数一定有一奇数一偶数(也有可能两个 \(1\)),将奇数放左边,偶数放右边,建二分图。求一发二分图匹配即可。
要注意的是两个 1 的和也是素数,首先奇数 1 放在最后不急着匹配,如果 \(1\) 的数量大于 \(1\) 的话,先将两个 \(1\) 组合起来。
code
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int N = 2e6 + 10;
const int MAXN = 3e3 + 5;
int notprime[N];
int n, k;
vector<int> odd, even;
int vis[MAXN], has[MAXN], a[MAXN], b[MAXN];
vector<int> v[MAXN];
int dfs(int x) {
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i];
if(!vis[to]) {
vis[to] = 1;
if(has[to] == -1 || dfs(has[to])) {
has[to] = x;
return 1;
}
}
}
return 0;
}
int main() {
for(int i = 2; i < N; i++) if(!notprime[i]) {
for(ll j = 1LL * i * i; j < N; j += i) notprime[j] = 1;
}
int T;
scanf("%d", &T);
while(T--) {
odd.clear();
even.clear();
memset(has, -1, sizeof has);
scanf("%d%d", &n, &k);
int cnt = 0;
for(int i = 0; i < n; i++) {
int x;
scanf("%d", &x);
if(x == 1) cnt++;
else if(x & 1) odd.push_back(x);
else even.push_back(x);
}
int cc = cnt;
while(cc--) odd.push_back(1);
int ans = 0;
for(int i = 0; i < odd.size(); i++) {
v[i].clear();
for(int j = 0; j < even.size(); j++) {
if(!notprime[odd[i] + even[j]]) {
v[i].push_back(j);
}
}
memset(vis, 0, sizeof vis);
if(dfs(i) && k) {
ans += 2;
k--;
}
}
memset(a, 0, sizeof a);
memset(b, 0, sizeof b);
for(int i = 0; i < even.size(); i++) {
if(has[i] != -1) {
a[has[i]] = 1;
b[i] = 1;
}
}
int cnt1 = 0;
for(int i = 0; i < odd.size() && k; i++) {
if(!a[i] && odd[i] == 1) cnt1++;
}
while(k && cnt1 > 1) {
cnt1 -= 2;
ans += 2;
k--;
}
int flg = cnt1;
for(int i = 0; i < odd.size() && k; i++) {
if(!a[i] && odd[i] == 1) {
if(flg) {
flg--;
} else {
a[i] = 1;
}
}
}
for(int i = 0; i < odd.size() && k; i++) {
for(int j = 0; j < v[i].size() && k; j++) {
int to = v[i][j];
if(a[i] && !b[to]) { ans++; k--; b[to] = 1; }
else if(!a[i] && b[to]) { ans++; k--; if(odd[i] == 1) cnt1--; a[i] = 1; }
}
}
if(k && cnt > 1 && cnt1) ans++;
printf("%d\n", ans);
}
return 0;
}
zoj3988的更多相关文章
- 2017CCPC秦皇岛 H题Prime Set&&ZOJ3988
题意: 定义一种集合,只有两个数,两个数不同且加起来为素数.要从n个数里抽出数字组成该集合(数字也可以是1~n,这个好懵圈啊),要求你选择最多k个该种集合组成一个有最多元素的集合,求出元素的数量. 思 ...
- 【二分图最大匹配】【匈牙利算法】zoj3988 Prime Set
题意:给你n个正整数,一对和为素数的数为一个合法数对.你选不超过K个合法数对,使得你选的数对涉及到的数的数量最大化.输出这个值. 所有1之间是可以任意两两配对的. 把奇数放在左侧,偶数放在右侧. 考虑 ...
- zoj3988 二分图匹配
给一个数组,对于每两个数加起来为素数那么就是一个集合,求不超过k个集合的最多数是多少 解法:二分图匹配,先打素数筛,预处理边集,匹配完之后分两种情况k>匹配数,那么可以直接输出匹配数*2,否则可 ...
- zoj3988 Prime Set
思路不难想到二分图求个最大匹配P,若P>=K,则2*K即可,否则应为P*2+min(K-P,未匹配且有度数不为0的顶点个数s).但坑点在于有1的情况,所以如果直接建二分图去跑最大匹配会因为1的影 ...
- ZOJ-3988 2017CCPC-秦皇岛 Prime Set 二分图最大匹配 匈牙利
题面 题意:给你n个数,你可以选择2个和为质数的数为一对,每个数可以重复选择,你最多选k对,问你最多能选多少个不同数出来 题解:首先思考怎么样的数和为质数,2个偶数相加不行,除了1+1以外2个奇数相加 ...
随机推荐
- CDQZ 2017 游记
Day0: 提前放了一整天假,颓过去了.老吕让我去给B层的讲课,ppt还没做,只能在飞机上赶了QAQ.然后从上午到了衡水就一直在路上或者天上,到了晚上才到学校,然而ppt还是没有做完.还有,鄂尔多斯真 ...
- 如何设置项目encoding为utf-8
1.鼠标右键点击项目,选择[properties] 2.选择[Resource],在Text file encoding里面选择UTF-8,点击[ok] 大功告成! 木头大哥所发的文章均基于自身实践, ...
- boost::algorithm用法详解之字符串关系判断
http://blog.csdn.net/qingzai_/article/details/44417937 下面先列举几个常用的: #define i_end_with boost::iends_w ...
- [hdu 2586]lca模板题(在线+离线两种版本)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 在线版本: 在线方法的思路很简单,就是倍增.一遍dfs得到每个节点的父亲,以及每个点的深度.然后 ...
- webstorm中把style的内容隐藏,如何把style的内容展开?
我们经常看到在webstorm中style的内容以...表示如下图所示,只有把光标移到上面时才会看到内容: 如何把上述的style的内容展开呢? 请按一下步骤操作: 第一步:File------> ...
- C# 程序Hello World
先创建一个工程文件->选择的是console application. 然后开始写代码如下: using System; using System.Collections.Generic; us ...
- Sqlserver面试题
1.用一条SQL语句 查询出每门课都大于80分的学生姓名 name kecheng fenshu 张三 语文 81张三 数学 75李四 语文 ...
- iOS 中捕获程序崩溃日志 (2014-04-22 17:35:59)
http://blog.sina.com.cn/s/blog_b71d24920101ky2d.html iOS开发中遇到程序崩溃是很正常的事情,如何在程序崩溃时捕获到异常信息并通知开发者,是大多数软 ...
- OpenWRT介绍
1. 介绍 OpenWRT是一款第三方路由器固件, 其特别在于开放性, 如它的文件系统可写, 用户可在路由器上安装需要的第三方软件.通过刷入OpenWRT, 我们可以完成如下事情 - DLNA共享 - ...
- Image.FromStream与Image.FromFile使用区别
将一个图片加载并显示在picturebox上,一般情况下得到预期的结果,然而对于同一个filepath, 若连续两次调用下面的语句系统将会报错(如用户多次选择加载同一张图片使用Image.FromFi ...