Codeforces Round #431 (Div. 2)
Where do odds begin, and where do they end? Where does hope emerge, and will they ever break?
Given an integer sequence a1, a2, ..., an of length n. Decide whether it is possible to divide it into an odd number of non-empty subsegments, the each of which has an odd length and begins and ends with odd numbers.
A subsegment is a contiguous slice of the whole sequence. For example, {3, 4, 5} and {1} are subsegments of sequence {1, 2, 3, 4, 5, 6}, while {1, 2, 4} and {7} are not.
The first line of input contains a non-negative integer n (1 ≤ n ≤ 100) — the length of the sequence.
The second line contains n space-separated non-negative integers a1, a2, ..., an (0 ≤ ai ≤ 100) — the elements of the sequence.
Output "Yes" if it's possible to fulfill the requirements, and "No" otherwise.
You can output each letter in any case (upper or lower).
3
1 3 5
Yes
5
1 0 1 5 1
Yes
3
4 3 1
No
4
3 9 9 3
No
In the first example, divide the sequence into 1 subsegment: {1, 3, 5} and the requirements will be met.
In the second example, divide the sequence into 3 subsegments: {1, 0, 1}, {5}, {1}.
In the third example, one of the subsegments must start with 4 which is an even number, thus the requirements cannot be met.
In the fourth example, the sequence can be divided into 2 subsegments: {3, 9, 9}, {3}, but this is not a valid solution because 2 is an even number.
题意:给定一数组,判断是否可以分成奇数个组,每组个数是奇数,每组的首尾都为奇数。
分析:偶数长度不可能,奇数长度无论怎么分,首尾必须都为奇数,否则不可能,思维题!
#include <bits/stdc++.h> using namespace std; const int maxn = ; int a[maxn]; int main()
{
int n;
scanf("%d",&n); for(int i = ; i < n; i++)
scanf("%d",&a[i]); if(n%==) {
if(a[]%==||a[n-]%==)
puts("No");
else puts("Yes");
}
else {
puts("No");
} return ;
}
Connect the countless points with lines, till we reach the faraway yonder.
There are n points on a coordinate plane, the i-th of which being (i, yi).
Determine whether it's possible to draw two parallel and non-overlapping lines, such that every point in the set lies on exactly one of them, and each of them passes through at least one point in the set.
The first line of input contains a positive integer n (3 ≤ n ≤ 1 000) — the number of points.
The second line contains n space-separated integers y1, y2, ..., yn ( - 109 ≤ yi ≤ 109) — the vertical coordinates of each point.
Output "Yes" (without quotes) if it's possible to fulfill the requirements, and "No" otherwise.
You can print each letter in any case (upper or lower).
5
7 5 8 6 9
Yes
5
-1 -2 0 0 -5
No
5
5 4 3 2 1
No
5
1000000000 0 0 0 0
Yes
In the first example, there are five points: (1, 7), (2, 5), (3, 8), (4, 6) and (5, 9). It's possible to draw a line that passes through points 1, 3, 5, and another one that passes through points 2, 4 and is parallel to the first one.
In the second example, while it's possible to draw two lines that cover all points, they cannot be made parallel.
In the third example, it's impossible to satisfy both requirements at the same time.
题意:
给定 n 个点的坐标,判断是否所有的点,都在两条不重合的平行线上。
分析:
计算几何很少接触,但是一般CF的计算几何都是考思维,感觉很复杂,情况很多!
看了大牛的思路,确实厉害。

因为只存在两条平行直线,枚举这平行直线,平行直线可以通过ab,bc,ac,另一个点就在另一条平行的直线上。
这样将所有点分为了两个部分,其中另一个部分,要么只有一个点,要么在一条直线上,并且平行。
#include <bits/stdc++.h> using namespace std; const int maxn = ; typedef long long ll;
int n; struct Node {
ll x,y;
} nodes[maxn],pp[maxn]; ll cc(Node a,Node b,Node c) {
return (b.y-a.y)*(c.x-b.x) - (c.y-b.y)*(b.x-a.x);
} bool check() {
int cnt=;
for(int i=; i<=n; i++)
if(cc(nodes[],nodes[],nodes[i])!=)
pp[++cnt]=nodes[i]; for(int i=; i<=cnt; i++)
if(cc(pp[],pp[],pp[i])!=)
return ;
Node ta,tb,tc;
ta.x=nodes[].x-nodes[].x,ta.y=nodes[].y-nodes[].y;
tb.x=pp[].x-pp[].x,tb.y=pp[].y-pp[].y;
tc.x=tc.y=;
return cnt<||cc(tc,ta,tb)==;
} int main() {
scanf("%d",&n); for(int i = ; i <= n; i++) {
scanf("%I64d",&nodes[i].y);
nodes[i].x = i;
} int ff = ;
for(int i=; i<=n&&!ff; i++)
if(cc(nodes[i-],nodes[i-],nodes[i])!=)
ff=;
if(!ff) {
printf("NO\n");
return ;
}
if(check()) {
printf("YES\n");
return ;
}
swap(nodes[],nodes[]);
if(check()) {
printf("YES\n");
return ;
}
swap(nodes[],nodes[]);
if(check()) {
printf("YES\n");
return ;
}
printf("NO\n");
return ; return ;
}
From beginning till end, this message has been waiting to be conveyed.
For a given unordered multiset of n lowercase English letters ("multi" means that a letter may appear more than once), we treat all letters as strings of length 1, and repeat the following operation n - 1 times:
- Remove any two elements s and t from the set, and add their concatenation s + t to the set.
The cost of such operation is defined to be
, where f(s, c) denotes the number of times character cappears in string s.
Given a non-negative integer k, construct any valid non-empty set of no more than 100 000 letters, such that the minimum accumulative cost of the whole process is exactly k. It can be shown that a solution always exists.
The first and only line of input contains a non-negative integer k (0 ≤ k ≤ 100 000) — the required minimum cost.
Output a non-empty string of no more than 100 000 lowercase English letters — any multiset satisfying the requirements, concatenated to be a string.
Note that the printed string doesn't need to be the final concatenated string. It only needs to represent an unordered multiset of letters.
12
abababab
3
codeforces
For the multiset {'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b'}, one of the ways to complete the process is as follows:
- {"ab", "a", "b", "a", "b", "a", "b"}, with a cost of 0;
- {"aba", "b", "a", "b", "a", "b"}, with a cost of 1;
- {"abab", "a", "b", "a", "b"}, with a cost of 1;
- {"abab", "ab", "a", "b"}, with a cost of 0;
- {"abab", "aba", "b"}, with a cost of 1;
- {"abab", "abab"}, with a cost of 1;
- {"abababab"}, with a cost of 8.
The total cost is 12, and it can be proved to be the minimum cost of the process.
题意:给定一个整数 k ,求构造一个字符串,字符串由单个多重集合的字母拼起来,每次连接两个字符串,都有代价,总代价题目中有。
分析:
策略是:全部都与单字符拼起来。接近答案时,换一个字符重头来。
#include <bits/stdc++.h> using namespace std; int main()
{ int n;
scanf("%d",&n); string s = "";
if(n==) {
cout<<"a"<<endl;
}
else {
char c = 'a';
while(n) {
int sum = ;
int i = ;
for(i = ; sum <=n; i++) {
sum +=i;
} n -=(sum-i+);
for(int j = ; j<i-;j++) {
s +=c;
}
c++; }
cout<<s<<endl;
} return ;
}
总的来说,感觉思维上和大佬们还是有很大的差距,要继续努力才行~~~
Codeforces Round #431 (Div. 2)的更多相关文章
- Codeforces Round #431 (Div. 1)
A. From Y to Y time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- Codeforces Round #431 (Div. 2) C. From Y to Y
题目: C. From Y to Y time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- Codeforces Round #431 (Div. 2) C
From beginning till end, this message has been waiting to be conveyed. For a given unordered multise ...
- 【Codeforces Round #431 (Div. 1) D.Shake It!】
·最小割和组合数放在了一起,产生了这道题目. 英文题,述大意: 一张初始化为仅有一个起点0,一个终点1和一条边的图.输入n,m表示n次操作(1<=n,m<=50),每次操作是任选一 ...
- 【Codeforces Round 431 (Div. 2) A B C D E五个题】
先给出比赛地址啦,感觉这场比赛思维考察非常灵活而美妙. A. Odds and Ends ·述大意: 输入n(n<=100)表示长度为n的序列,接下来输入这个序列.询问是否可以将序列划 ...
- Codeforces Round #431 (Div. 2) B. Tell Your World
B. Tell Your World time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- 【推导】【分类讨论】Codeforces Round #431 (Div. 1) B. Rooter's Song
给你一个这样的图,那些点是舞者,他们每个人会在原地待ti时间之后,以每秒1m的速度向前移动,到边界以后停止.只不过有时候会碰撞,碰撞之后的转向是这样哒: 让你输出每个人的停止位置坐标. ①将x轴上初始 ...
- 【推导】【贪心】Codeforces Round #431 (Div. 1) A. From Y to Y
题意:让你构造一个只包含小写字母的可重集,每次可以取两个元素,将它们合并,合并的代价是这两个元素各自的从‘a’到‘z’出现的次数之积的和. 给你K,你构造的可重集必须满足将所有元素合而为一以后,所消耗 ...
- Codeforces Round #431 (Div. 2) B
Connect the countless points with lines, till we reach the faraway yonder. There are n points on a c ...
随机推荐
- nginx-图片资源代理
location ~ .*\.(gif|jpg|jpeg|png|bmp|mp3)$ { root E:/xx/Uploads/; } 记得放在根目录下面
- oracle12C--DG FAR SYNC 部署(前提为搭建好12C的DG)
<<往期12CDG搭建>> 一,理解同步异步模式 01, 使用LGWR 进程的SYNC 方式 1)Primary Database 产生的Redo 日志要同时写到日志文件和网络 ...
- Android 中判断网络状态
首先在AndroidManifest.xml添加权限 <uses-permission android:name="android.permission.ACCESS_NETWORK_ ...
- Dubbo解析及原理浅析
原文链接:https://blog.csdn.net/chao_19/article/details/51764150 一.Duboo基本概念解释 Dubbo是一种分布式服务框架. Webservic ...
- (转)淘宝系统信息采集和监控工具tsar
淘宝系统信息采集和监控工具tsar 项目地址:https://github.com/alibaba/tsar 一.介绍 Tsar是淘宝的系统信息采集和监测工具,主要用来收集服务器的系统信息(如cpu, ...
- 面向切面编程 (AOP )
什么是面向切面编程? 面向切面编程就是(AOP --- aspect-oriented programming), 在百科上说: 面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一 ...
- 一些Andoid studio常用的快捷键
常用快捷键 Android Studio是基于IntelliJ IDEA的,我们都知道,IDEA是一个很方便很好用的IDE,其中有许多快捷键,但是太多快捷键我们也记不住. 其实,我们可以记住几个 ...
- Js简易代码生成工具
代码 javascript:(function(){ document.body.innerHTML = '<textarea id="txtTemplate" style= ...
- 跨域策略文件crossdomain.xml文件
使用crossdomain.xml让Flash可以跨域传输数据 一.crossdomain.xml文件的作用 跨域,顾名思义就是需要的资源不在自己的域服务器上,需要访问其他域服务器.跨域策略文件 ...
- C# 数据库连接增删改查
C# 连接数据库 using System.Data.sqlCliect; // 加在头 main函数里面用法(删) //连接字符串 string Connectionstring = "s ...