Codeforces Round #431 (Div. 2)
Where do odds begin, and where do they end? Where does hope emerge, and will they ever break?
Given an integer sequence a1, a2, ..., an of length n. Decide whether it is possible to divide it into an odd number of non-empty subsegments, the each of which has an odd length and begins and ends with odd numbers.
A subsegment is a contiguous slice of the whole sequence. For example, {3, 4, 5} and {1} are subsegments of sequence {1, 2, 3, 4, 5, 6}, while {1, 2, 4} and {7} are not.
The first line of input contains a non-negative integer n (1 ≤ n ≤ 100) — the length of the sequence.
The second line contains n space-separated non-negative integers a1, a2, ..., an (0 ≤ ai ≤ 100) — the elements of the sequence.
Output "Yes" if it's possible to fulfill the requirements, and "No" otherwise.
You can output each letter in any case (upper or lower).
3
1 3 5
Yes
5
1 0 1 5 1
Yes
3
4 3 1
No
4
3 9 9 3
No
In the first example, divide the sequence into 1 subsegment: {1, 3, 5} and the requirements will be met.
In the second example, divide the sequence into 3 subsegments: {1, 0, 1}, {5}, {1}.
In the third example, one of the subsegments must start with 4 which is an even number, thus the requirements cannot be met.
In the fourth example, the sequence can be divided into 2 subsegments: {3, 9, 9}, {3}, but this is not a valid solution because 2 is an even number.
题意:给定一数组,判断是否可以分成奇数个组,每组个数是奇数,每组的首尾都为奇数。
分析:偶数长度不可能,奇数长度无论怎么分,首尾必须都为奇数,否则不可能,思维题!
#include <bits/stdc++.h> using namespace std; const int maxn = ; int a[maxn]; int main()
{
int n;
scanf("%d",&n); for(int i = ; i < n; i++)
scanf("%d",&a[i]); if(n%==) {
if(a[]%==||a[n-]%==)
puts("No");
else puts("Yes");
}
else {
puts("No");
} return ;
}
Connect the countless points with lines, till we reach the faraway yonder.
There are n points on a coordinate plane, the i-th of which being (i, yi).
Determine whether it's possible to draw two parallel and non-overlapping lines, such that every point in the set lies on exactly one of them, and each of them passes through at least one point in the set.
The first line of input contains a positive integer n (3 ≤ n ≤ 1 000) — the number of points.
The second line contains n space-separated integers y1, y2, ..., yn ( - 109 ≤ yi ≤ 109) — the vertical coordinates of each point.
Output "Yes" (without quotes) if it's possible to fulfill the requirements, and "No" otherwise.
You can print each letter in any case (upper or lower).
5
7 5 8 6 9
Yes
5
-1 -2 0 0 -5
No
5
5 4 3 2 1
No
5
1000000000 0 0 0 0
Yes
In the first example, there are five points: (1, 7), (2, 5), (3, 8), (4, 6) and (5, 9). It's possible to draw a line that passes through points 1, 3, 5, and another one that passes through points 2, 4 and is parallel to the first one.
In the second example, while it's possible to draw two lines that cover all points, they cannot be made parallel.
In the third example, it's impossible to satisfy both requirements at the same time.
题意:
给定 n 个点的坐标,判断是否所有的点,都在两条不重合的平行线上。
分析:
计算几何很少接触,但是一般CF的计算几何都是考思维,感觉很复杂,情况很多!
看了大牛的思路,确实厉害。
因为只存在两条平行直线,枚举这平行直线,平行直线可以通过ab,bc,ac,另一个点就在另一条平行的直线上。
这样将所有点分为了两个部分,其中另一个部分,要么只有一个点,要么在一条直线上,并且平行。
#include <bits/stdc++.h> using namespace std; const int maxn = ; typedef long long ll;
int n; struct Node {
ll x,y;
} nodes[maxn],pp[maxn]; ll cc(Node a,Node b,Node c) {
return (b.y-a.y)*(c.x-b.x) - (c.y-b.y)*(b.x-a.x);
} bool check() {
int cnt=;
for(int i=; i<=n; i++)
if(cc(nodes[],nodes[],nodes[i])!=)
pp[++cnt]=nodes[i]; for(int i=; i<=cnt; i++)
if(cc(pp[],pp[],pp[i])!=)
return ;
Node ta,tb,tc;
ta.x=nodes[].x-nodes[].x,ta.y=nodes[].y-nodes[].y;
tb.x=pp[].x-pp[].x,tb.y=pp[].y-pp[].y;
tc.x=tc.y=;
return cnt<||cc(tc,ta,tb)==;
} int main() {
scanf("%d",&n); for(int i = ; i <= n; i++) {
scanf("%I64d",&nodes[i].y);
nodes[i].x = i;
} int ff = ;
for(int i=; i<=n&&!ff; i++)
if(cc(nodes[i-],nodes[i-],nodes[i])!=)
ff=;
if(!ff) {
printf("NO\n");
return ;
}
if(check()) {
printf("YES\n");
return ;
}
swap(nodes[],nodes[]);
if(check()) {
printf("YES\n");
return ;
}
swap(nodes[],nodes[]);
if(check()) {
printf("YES\n");
return ;
}
printf("NO\n");
return ; return ;
}
From beginning till end, this message has been waiting to be conveyed.
For a given unordered multiset of n lowercase English letters ("multi" means that a letter may appear more than once), we treat all letters as strings of length 1, and repeat the following operation n - 1 times:
- Remove any two elements s and t from the set, and add their concatenation s + t to the set.
The cost of such operation is defined to be , where f(s, c) denotes the number of times character cappears in string s.
Given a non-negative integer k, construct any valid non-empty set of no more than 100 000 letters, such that the minimum accumulative cost of the whole process is exactly k. It can be shown that a solution always exists.
The first and only line of input contains a non-negative integer k (0 ≤ k ≤ 100 000) — the required minimum cost.
Output a non-empty string of no more than 100 000 lowercase English letters — any multiset satisfying the requirements, concatenated to be a string.
Note that the printed string doesn't need to be the final concatenated string. It only needs to represent an unordered multiset of letters.
12
abababab
3
codeforces
For the multiset {'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b'}, one of the ways to complete the process is as follows:
- {"ab", "a", "b", "a", "b", "a", "b"}, with a cost of 0;
- {"aba", "b", "a", "b", "a", "b"}, with a cost of 1;
- {"abab", "a", "b", "a", "b"}, with a cost of 1;
- {"abab", "ab", "a", "b"}, with a cost of 0;
- {"abab", "aba", "b"}, with a cost of 1;
- {"abab", "abab"}, with a cost of 1;
- {"abababab"}, with a cost of 8.
The total cost is 12, and it can be proved to be the minimum cost of the process.
题意:给定一个整数 k ,求构造一个字符串,字符串由单个多重集合的字母拼起来,每次连接两个字符串,都有代价,总代价题目中有。
分析:
策略是:全部都与单字符拼起来。接近答案时,换一个字符重头来。
#include <bits/stdc++.h> using namespace std; int main()
{ int n;
scanf("%d",&n); string s = "";
if(n==) {
cout<<"a"<<endl;
}
else {
char c = 'a';
while(n) {
int sum = ;
int i = ;
for(i = ; sum <=n; i++) {
sum +=i;
} n -=(sum-i+);
for(int j = ; j<i-;j++) {
s +=c;
}
c++; }
cout<<s<<endl;
} return ;
}
总的来说,感觉思维上和大佬们还是有很大的差距,要继续努力才行~~~
Codeforces Round #431 (Div. 2)的更多相关文章
- Codeforces Round #431 (Div. 1)
A. From Y to Y time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- Codeforces Round #431 (Div. 2) C. From Y to Y
题目: C. From Y to Y time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- Codeforces Round #431 (Div. 2) C
From beginning till end, this message has been waiting to be conveyed. For a given unordered multise ...
- 【Codeforces Round #431 (Div. 1) D.Shake It!】
·最小割和组合数放在了一起,产生了这道题目. 英文题,述大意: 一张初始化为仅有一个起点0,一个终点1和一条边的图.输入n,m表示n次操作(1<=n,m<=50),每次操作是任选一 ...
- 【Codeforces Round 431 (Div. 2) A B C D E五个题】
先给出比赛地址啦,感觉这场比赛思维考察非常灵活而美妙. A. Odds and Ends ·述大意: 输入n(n<=100)表示长度为n的序列,接下来输入这个序列.询问是否可以将序列划 ...
- Codeforces Round #431 (Div. 2) B. Tell Your World
B. Tell Your World time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- 【推导】【分类讨论】Codeforces Round #431 (Div. 1) B. Rooter's Song
给你一个这样的图,那些点是舞者,他们每个人会在原地待ti时间之后,以每秒1m的速度向前移动,到边界以后停止.只不过有时候会碰撞,碰撞之后的转向是这样哒: 让你输出每个人的停止位置坐标. ①将x轴上初始 ...
- 【推导】【贪心】Codeforces Round #431 (Div. 1) A. From Y to Y
题意:让你构造一个只包含小写字母的可重集,每次可以取两个元素,将它们合并,合并的代价是这两个元素各自的从‘a’到‘z’出现的次数之积的和. 给你K,你构造的可重集必须满足将所有元素合而为一以后,所消耗 ...
- Codeforces Round #431 (Div. 2) B
Connect the countless points with lines, till we reach the faraway yonder. There are n points on a c ...
随机推荐
- ics httpDELETE 时增加 content,length 特别需求
unit: OverbyteIcsHttpProt.pasprocedure THttpCli.SendRequest(const Method, Version: String); var Head ...
- android 学习资源网址
脚本之家: http://www.jb51.net/list/list_233_2.htm csdn: http://blog.csdn.net/xubo578/article/details/571 ...
- unity向量计算
参考:https://www.cnblogs.com/wywnet/p/4790665.html 上面的文章讲的很重要 下面是我自己实现的一个例子 一直一个向量,一个夹角,求另一个向量 按P键改变夹角 ...
- GIT远程仓库的使用
查看当前项目有哪些远程仓库 $ git remote bixiaopeng@bixiaopengtekiMacBook-Pro wirelessqa$ git remote origin 查看远程仓库 ...
- web前端与后台数据访问的对象封装
前言:通常情况下,在不使用angularJS/nodeJS/react等这类完整性的解决方案的js时,前端与后台的异步交互都是使用Ajax技术进行解决 一:作为java web开发工程师可能以下代码是 ...
- vim 配置文件——部分配置
//vim 相关 set nu set showmatch set autoindent set smartindent set ruler set incsearch set tabstop=4 s ...
- ThinkPHP3.2 整合支付宝RSA加密方式
RSA核心加密验证算法 <?php /** * RSA签名 * @param $data 待签名数据 * @param $private_key 商户私钥字符串 * return 签名结果 */ ...
- GridView .net访问
HTML code <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns=&qu ...
- MVC3.0与MVC2.0的区别
昨天面试时第一回用MVC2.0做了一个简单的增删改查功能的测试.想一下用了一年多的MVC3.0,对这两个版本不同之处做以下几点总结: 最明显的是MVC3.0较MVC2.0而言,多了Razor视图: 1 ...
- Thrift笔记(五)--Thrift server源码分析
从(四)server代码跟进 public static void simple(MultiplicationService.Processor processor) { try { TServerT ...