题意:n个城市,相互可达(有n(n-1)/2条边),其中有一些道路上面有妖怪,现在,从1号城市出发,随机挑取一个城市走去,这个道路上的妖怪就会被消灭,求:

在平均情况下,需要走多少步,使得任意两个城市之间,可以不经过妖怪而相互可达;

(n<=30)

分析:

1、根据题意可知,我们要将每一个可以不经过妖怪的一个个连通分量找出来;

2、然后从一个连通分量走到另一个连通分量,这时肯定进过妖怪;

3、一个一个连通分量,完成了哪几个连通分量,需要保存,这时,就用集合的方式保存;

4、从一个连通分量,走到另一个连通分量,其概率 n-con/(n-1) ,那么平均要走 n-1 / (n-con) 次;

5、状态转移,下一个状态s|(i<<n),和走向这个状态的概率;

#include <bits/stdc++.h>

using namespace std;

int n,m;
vector<int> g[];
int cnt;
int num[];
bool vis[]; int dfs(int u) {
int count = ;
vis[u] = ;
for(int i=;i<g[u].size();i++) {
int v = g[u][i];
if(!vis[v])
count+=dfs(v);
}
return count;
} map<int,double> f; double dp(int s) {
if(f[s]>1e-)
return f[s]; int con = ;
for(int i=;i<cnt;i++)
if(s&(<<i))
con+=num[i];
if(con==n)
return f[s] = ; f[s] = (n-)*1.0/(n-con);
for(int i=;i<cnt;i++) {
if(!(s&(<<i)))
f[s] +=dp(s|(<<i))*num[i]*1.0/(n-con);
}
return f[s];
} int main()
{
int t;
scanf("%d",&t);
int kase = ;
while(t--) { scanf("%d%d",&n,&m); f.clear();
for(int i=;i<=n;i++)
g[i].clear();
cnt = ;
memset(vis,,sizeof(vis));
memset(num,,sizeof(num)); int u,v;
for(int i=;i<m;i++) {
scanf("%d%d",&u,&v);
g[u].push_back(v);
g[v].push_back(u);
} for(int i=;i<=n;i++) {
if(!vis[i])
num[cnt++] = dfs(i);
} printf("Case %d: %lf\n",++kase,dp()); }
return ;
}

Uva 11600 期望DP的更多相关文章

  1. UVa 11762 (期望 DP) Race to 1

    设f(x)表示x转移到1需要的次数的期望,p(x)为不超过x的素数的个数,其中能整除x的有g(x)个 则有(1-g(x)/p(x))的概率下一步还是转移到x,剩下的情况各有1/p(x)的概率转移到x/ ...

  2. UVa 11427 (期望 DP) Expect the Expected

    设d(i, j)表示前i局每局获胜的比例均不超过p,且前i局共获胜j局的概率. d(i, j) = d(i-1, j) * (1-p) + d(i-1, j-1) * p 则只玩一天就就不再玩的概率Q ...

  3. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  4. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  5. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  6. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  7. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  8. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  9. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

随机推荐

  1. 邮件email

    参考地址:https://blog.csdn.net/baidu_30000217/article/details/52942258 邮箱配置地址:http://service.exmail.qq.c ...

  2. Hash算法总结

    1. Hash是什么,它的作用 先举个例子.我们每个活在世上的人,为了能够参与各种社会活动,都需要一个用于识别自己的标志.也许你觉得名字或是身份证就足以代表你这个人,但是这种代表性非常脆弱,因为重名的 ...

  3. linux 运维基础之http协议详解

    引言 这尼玛博客还得自己在这里写,难受一匹本来排版好的...每次都这样嗨....本内容属于借鉴资源,侵权删! HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系 ...

  4. 页面跳转问题-button 确定提交按钮

    form和ajax不可一起用了,button标签默认是用的form表单,所以导致跳转有问题,form不能和ajax一起用的,切记

  5. CentOS 6.7 安装配置 nagios-server

    作者博文地址:https://www.cnblogs.com/liu-shuai/ 一.简介    Nagios是一款开源的免费网络监视工具,能有效监控Windows.Linux和Unix的主机状态, ...

  6. Android IntentFilter 匹配原则浅析

    1 Intent分为两大类,显式和隐式. 显式事件,就是指通过 component Name 属性,明确指定了目标组件的事件. 比如我们新建一个Intent,指名道姓的说,此事件用于启动名为" ...

  7. s-2、charles 入门

    本文的内容主要包括: Charles 的简介 如何安装 Charles 将 Charles 设置成系统代理 Charles 主界面介绍 过滤网络请求 截取 iPhone 上的网络封包 截取 Https ...

  8. poj 1080 ——Human Gene Functions——————【最长公共子序列变型题】

    Human Gene Functions Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17805   Accepted:  ...

  9. 3、card 卡片

    1.基本用法的使用 /* --- htm l----*/ <ion-content> <ion-card> <ion-card-header> Header < ...

  10. win10 MySQL8.0 zip包安装及问题解决

    1.在官网下载zip包 https://dev.mysql.com/downloads/mysql/ 2.将zip包解压到自己的工作目录中 3.配置环境变量 1)添加环境变量 MYSQL_HOME E ...