Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
This problem involves the efficient computation of integer roots of numbers. 
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the n th. power, for an integer k (this integer is what your program must find).


Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10 101 and there exists an integer k, 1<=k<=10 9 such that k n = p.


Output

For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.


Sample Input

2 16
3 27
7 4357186184021382204544

Sample Output

4
3
1234
题意:给出n和p(n<=200,p<=10^101),求方程k^n=p的k的正整数解,保证k<=10^9 题解:这道神题传说有非常神奇的解f♂a

   然而并没有什么卵用,你只会收到一连串的WA

   该题的意图应该是贪心,至于怎么贪……わかない……

好吧,我太菜了,只能用最暴力的方法,设x^y=p
对于y>n的解来说,x必然小于k
对于y<n的解来说,x必然大于k
对于x来说单调性
所以可以二分
至于y该怎么求……想必一个高精度的log就行了!而且只需要保留个位即可
感觉我的代码还是有问题的,但莫名1A了
代码如下
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; struct big
{
int len;
int num[];
}; int n; void trans(char* a,big &b)
{
memset(b.num,,sizeof(b.num));
int len=strlen(a);
for(int i=; i<len; i++)
{
b.num[len-i-]=a[i]-'';
}
b.len=len;
} void trans_(int a,big &b)
{
memset(b.num,,sizeof(b.num));
int len=;
while(a)
{
b.num[len++]=a%;
a/=;
}
b.len=len;
} void print(big a)
{
for(int i=a.len-; i>=; i--)
{
printf("%d",a.num[i]);
}
puts("");
} int comp(big x,big y)
{
if(x.len>y.len)
{
return ;
}
if(x.len<y.len)
{
return -;
}
for(int i=x.len-; i>=; i--)
{
if(x.num[i]>y.num[i])
{
return ;
}
if(x.num[i]<y.num[i])
{
return -;
}
}
return ;
} big sub(big a,big b)
{
big c;
int len=a.len;
int lenc=len;
for(int i=; i<len; i++)
{
c.num[i]=a.num[i]-b.num[i];
if(c.num[i]<)
{
c.num[i]+=;
a.num[i+]--;
}
}
while(c.num[lenc-]==&&lenc>)
{
lenc--;
}
c.len=lenc;
return c;
} void mul_ten(big &x)
{
int len=x.len;
len++;
for(int i=len-; i>=; i--)
{
x.num[i+]=x.num[i];
}
x.num[]=;
while(x.num[len-]==&&len>)
{
len--;
}
x.len=len;
} big div(big x,big y)
{
big f,m;
memset(f.num,,sizeof(f.num));
memset(m.num,,sizeof(m.num));
m.len=;
int len=x.len;
for(int i=x.len-; i>=; i--)
{
mul_ten(m);
m.num[]=x.num[i];
while(comp(m,y)!=-)
{
m=sub(m,y);
f.num[i]++;
}
}
while(f.num[len-]==&&len>)
{
len--;
}
f.len=len;
return f;
} int check(big x,big y)
{
big z;
int cnt=;
z.len=;
z.num[]=;
while(!comp(x,z)==)
{
if(comp(x,y)==-)
{
break;
}
cnt++;
x=div(x,y);
}
if(cnt<n)
{
return ;
}
else
{
return ;
}
} int main()
{
char b[];
int a;
big x,y;
while(scanf("%d %s",&n,b)==)
{
memset(x.num,,sizeof(x.num));
memset(y.num,,sizeof(y.num));
int l=,r=;
int mid;
trans(b,y);
while(l<r)
{
mid=(l+r)>>;
trans_(mid,x);
int flag=check(y,x);
if(flag)
{
l=mid;
}
else
{
r=mid-;
}
if(r-l<=)
{
trans_(r,x);
if(check(y,x))
{
printf("%d\n",r);
break;
}
else
{
printf("%d\n",l);
break;
}
}
}
}
}

 

POJ - 2109 Power of Cryptography(高精度log+二分)的更多相关文章

  1. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  2. POJ 2109 -- Power of Cryptography

    Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 26622   Accepted: ...

  3. POJ 2109 Power of Cryptography 数学题 double和float精度和范围

    Power of Cryptography Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 21354 Accepted: 107 ...

  4. poj 2109 Power of Cryptography

    点击打开链接 Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16388   Ac ...

  5. POJ 2109 Power of Cryptography【高精度+二分 Or double水过~~】

    题目链接: http://poj.org/problem?id=2109 参考: http://blog.csdn.net/code_pang/article/details/8263971 题意: ...

  6. POJ 2109 Power of Cryptography 大数,二分,泰勒定理 难度:2

    import java.math.BigInteger; import java.util.Scanner; public class Main { static BigInteger p,l,r,d ...

  7. poj 2109 Power of Cryptography (double 精度)

    题目:http://poj.org/problem?id=2109 题意:求一个整数k,使得k满足kn=p. 思路:exp()用来计算以e为底的x次方值,即ex值,然后将结果返回.log是自然对数,就 ...

  8. Poj 2109 / OpenJudge 2109 Power of Cryptography

    1.Link: http://poj.org/problem?id=2109 http://bailian.openjudge.cn/practice/2109/ 2.Content: Power o ...

  9. POJ-2109 Power of Cryptography(数学或二分+高精度)

    题目链接: https://vjudge.net/problem/POJ-2109 题目大意: 有指数函数 k^n = p , 其中k.n.p均为整数且 1<=k<=10^9 , 1< ...

随机推荐

  1. 三种实现Ajax的方式

    本文主要是比较三种实现Ajax的方式 1. prototype.js 2. jquery1.3.2.min.js 3. json2.js Java代码 收藏代码 后台处理程序(Servlet),访问路 ...

  2. Quartz.net 2.x 学习笔记02-Quartz.net 2.x在MVC站点中结合Log4net的使用

    Quartz.net 2.x在MVC站点中结合Log4net的使用 首先新建一个MVC的空站点: 第二步,添加Quartz.net的引用 在搜索处输入quartz.net搜索安装即可(目前是2.3) ...

  3. Py修行路 python基础 (二十一)logging日志模块 json序列化 正则表达式(re)

    一.日志模块 两种配置方式:1.config函数 2.logger #1.config函数 不能输出到屏幕 #2.logger对象 (获取别人的信息,需要两个数据流:文件流和屏幕流需要将数据从两个数据 ...

  4. leetcode609

    public class Solution { public IList<IList<string>> FindDuplicate(string[] paths) { Dict ...

  5. c# 程序调用cmd执行命令如SVN.exe

    c# 程序调用cmd执行命令如SVN.exe string str = Console.ReadLine(); System.Diagnostics.Process p = new System.Di ...

  6. spark 中文编码处理

    日志的格式是GBK编码的,而hadoop上的编码是用UTF-8写死的,导致最终输出乱码. 研究了下Java的编码问题. 网上其实对spark输入文件是GBK编码有现成的解决方案,具体代码如下 impo ...

  7. 字节流之文件输入流FileInputStream

  8. 1 JPA入门----项目搭建以及CRUD

    maven搭建JPA开发环境 1 依赖的maven pom文件     主要有hibernate-core.hibernate-entitymanager.javax-persistence.mysq ...

  9. js如何解析后台传过来的json字符串

    1.js如何解析后台传过来的json字符串? 注意:js是无法直接接收和使用json或者Php的数据,用的话会出现undefined,所以要转换一下. 方式一: var str = '{"r ...

  10. CSS 伪类与伪元素

    CSS的元素选择器除了根据id(#).class(.).属性([ ])选取元素以外,还有很重要的一类,就是根据元素的特殊状态来选取元素.它们就是伪类和伪元素.跟id选择器.类选择器.属性选择器以及派生 ...