Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
This problem involves the efficient computation of integer roots of numbers. 
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the n th. power, for an integer k (this integer is what your program must find).


Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10 101 and there exists an integer k, 1<=k<=10 9 such that k n = p.


Output

For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.


Sample Input

2 16
3 27
7 4357186184021382204544

Sample Output

4
3
1234
题意:给出n和p(n<=200,p<=10^101),求方程k^n=p的k的正整数解,保证k<=10^9 题解:这道神题传说有非常神奇的解f♂a

   然而并没有什么卵用,你只会收到一连串的WA

   该题的意图应该是贪心,至于怎么贪……わかない……

好吧,我太菜了,只能用最暴力的方法,设x^y=p
对于y>n的解来说,x必然小于k
对于y<n的解来说,x必然大于k
对于x来说单调性
所以可以二分
至于y该怎么求……想必一个高精度的log就行了!而且只需要保留个位即可
感觉我的代码还是有问题的,但莫名1A了
代码如下
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; struct big
{
int len;
int num[];
}; int n; void trans(char* a,big &b)
{
memset(b.num,,sizeof(b.num));
int len=strlen(a);
for(int i=; i<len; i++)
{
b.num[len-i-]=a[i]-'';
}
b.len=len;
} void trans_(int a,big &b)
{
memset(b.num,,sizeof(b.num));
int len=;
while(a)
{
b.num[len++]=a%;
a/=;
}
b.len=len;
} void print(big a)
{
for(int i=a.len-; i>=; i--)
{
printf("%d",a.num[i]);
}
puts("");
} int comp(big x,big y)
{
if(x.len>y.len)
{
return ;
}
if(x.len<y.len)
{
return -;
}
for(int i=x.len-; i>=; i--)
{
if(x.num[i]>y.num[i])
{
return ;
}
if(x.num[i]<y.num[i])
{
return -;
}
}
return ;
} big sub(big a,big b)
{
big c;
int len=a.len;
int lenc=len;
for(int i=; i<len; i++)
{
c.num[i]=a.num[i]-b.num[i];
if(c.num[i]<)
{
c.num[i]+=;
a.num[i+]--;
}
}
while(c.num[lenc-]==&&lenc>)
{
lenc--;
}
c.len=lenc;
return c;
} void mul_ten(big &x)
{
int len=x.len;
len++;
for(int i=len-; i>=; i--)
{
x.num[i+]=x.num[i];
}
x.num[]=;
while(x.num[len-]==&&len>)
{
len--;
}
x.len=len;
} big div(big x,big y)
{
big f,m;
memset(f.num,,sizeof(f.num));
memset(m.num,,sizeof(m.num));
m.len=;
int len=x.len;
for(int i=x.len-; i>=; i--)
{
mul_ten(m);
m.num[]=x.num[i];
while(comp(m,y)!=-)
{
m=sub(m,y);
f.num[i]++;
}
}
while(f.num[len-]==&&len>)
{
len--;
}
f.len=len;
return f;
} int check(big x,big y)
{
big z;
int cnt=;
z.len=;
z.num[]=;
while(!comp(x,z)==)
{
if(comp(x,y)==-)
{
break;
}
cnt++;
x=div(x,y);
}
if(cnt<n)
{
return ;
}
else
{
return ;
}
} int main()
{
char b[];
int a;
big x,y;
while(scanf("%d %s",&n,b)==)
{
memset(x.num,,sizeof(x.num));
memset(y.num,,sizeof(y.num));
int l=,r=;
int mid;
trans(b,y);
while(l<r)
{
mid=(l+r)>>;
trans_(mid,x);
int flag=check(y,x);
if(flag)
{
l=mid;
}
else
{
r=mid-;
}
if(r-l<=)
{
trans_(r,x);
if(check(y,x))
{
printf("%d\n",r);
break;
}
else
{
printf("%d\n",l);
break;
}
}
}
}
}

 

POJ - 2109 Power of Cryptography(高精度log+二分)的更多相关文章

  1. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  2. POJ 2109 -- Power of Cryptography

    Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 26622   Accepted: ...

  3. POJ 2109 Power of Cryptography 数学题 double和float精度和范围

    Power of Cryptography Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 21354 Accepted: 107 ...

  4. poj 2109 Power of Cryptography

    点击打开链接 Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16388   Ac ...

  5. POJ 2109 Power of Cryptography【高精度+二分 Or double水过~~】

    题目链接: http://poj.org/problem?id=2109 参考: http://blog.csdn.net/code_pang/article/details/8263971 题意: ...

  6. POJ 2109 Power of Cryptography 大数,二分,泰勒定理 难度:2

    import java.math.BigInteger; import java.util.Scanner; public class Main { static BigInteger p,l,r,d ...

  7. poj 2109 Power of Cryptography (double 精度)

    题目:http://poj.org/problem?id=2109 题意:求一个整数k,使得k满足kn=p. 思路:exp()用来计算以e为底的x次方值,即ex值,然后将结果返回.log是自然对数,就 ...

  8. Poj 2109 / OpenJudge 2109 Power of Cryptography

    1.Link: http://poj.org/problem?id=2109 http://bailian.openjudge.cn/practice/2109/ 2.Content: Power o ...

  9. POJ-2109 Power of Cryptography(数学或二分+高精度)

    题目链接: https://vjudge.net/problem/POJ-2109 题目大意: 有指数函数 k^n = p , 其中k.n.p均为整数且 1<=k<=10^9 , 1< ...

随机推荐

  1. 1020. Tree Traversals (25) ——树的遍历

    //题目 通过后续遍历 中序遍历 得出一棵树 ,然后按树的层次遍历打印 PS:以前对于这种用指针的题目是比较头痛的,现在做了一些链表操作后,感觉也不难 先通过后续中序建一棵树,然后通过BFS遍历这棵树 ...

  2. week-02 线性表

    一.PTA实验作业 题目1:顺序表 7-1 最长连续递增子序列 1. 设计思路 定义结构体List,定义数组Data[maxsize]表示顺序表元素,变量Position表示位置,变量Length表示 ...

  3. 移植LWIP(ENC28J60)

       上图就是整个移植的基本思路,非常清晰的三个层次.其实想想,本质上就是收发数据,只是LWIP协议通过对数据的封装可以实现网络传输.从图中我们就可以看到这里首先需要ENC28J60的驱动,这个驱动需 ...

  4. Tomcat下WebSocket最大连接数测试

    WebSocket现在很常用,想要测试tomcat的最大连接数,今天试了一个可行的办法和配置(之前是用全公司的设备一起来测试的,真机环境的测试收到网络的影响很大,其实真实环境应用中,网络才是webso ...

  5. MySQL-事务的实现-redo

    MySQL中事务: 事务的实现:      ACID: 原子性(A : Atomicity) 一致性(C : consistency ) 隔离性(I : isolation) 持久性(D : dura ...

  6. Java-Runoob:Java 对象和类

    ylbtech-Java-Runoob:Java 对象和类 1.返回顶部 1. Java 对象和类 Java作为一种面向对象语言.支持以下基本概念: 多态 继承 封装 抽象 类 对象 实例 方法 重载 ...

  7. thinkPHP增删改查的方法案例

    thinkphp对数据库增删改查进行了封装操作,使得使用更加方便,但是不一定灵活. 可以用封装的用,需要写sql,可以执行sql. 1.原始的 $Model = new Model(); // 实例化 ...

  8. 011. Python中*args, **kwargs 和 pass 和self 解释

    *args, **kwargs →在python都表示可变参数, *args表示任意多个任意类型无名参数, 是一个元组; **kwargs表示关键字参数(key/value参数), 是一个字典,接收的 ...

  9. git的分布式和集中式

    当然,Git的优势不单是不必联网这么简单,后面我们还会看到Git极其强大的分支管理,把SVN等远远抛在了后面.

  10. 使用模板创建第一个Web API项目

    软件环境 vs 2015 update3 本节将通过例子讲述创建Web API 项目的方法 第一步,打开vs ,依次通过[文件]菜单,[新建][项目]命令,大致步骤如下图 :   第2步,在弹出对话框 ...