BZOJ2299 [HAOI2011]向量 【裴蜀定理】
题目链接
题解
题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\)
显然我们就可以得到一对四元方程组,用裴蜀定理判断一下方程有没有解即可
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL a,b,x,y,tmp;
LL gcd(LL a,LL b){return b ? gcd(b,a % b) : a;}
int main(){
int T = read();
while (T--){
a = read(); b = read(); x = read(); y = read();
if (a < b) swap(a,b);
tmp = gcd(gcd(2 * a * b,a * a + b * b),a * a - b * b);
if ((b * x - a * y) % tmp || (b * x + a * y) % tmp || (a * x - b * y) % tmp || (a * x + b * y) % tmp)
puts("N");
else puts("Y");
}
return 0;
}
BZOJ2299 [HAOI2011]向量 【裴蜀定理】的更多相关文章
- 【BZOJ-2299】向量 裴蜀定理 + 最大公约数
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1118 Solved: 488[Submit][Status] ...
- [HAOI2011] 向量 - 裴蜀定理
给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...
- BZOJ 2299 向量(裴蜀定理)
题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...
- [BZOJ1441&BZOJ2257&BZOJ2299]裴蜀定理
裴蜀定理 对于整系数方程ax+by=m,设d =(a,b) 方程有整数解当且仅当d|m 这个定理实际上在之前学习拓展欧几里得解不定方程的时候就已经运用到 拓展到多元的方程一样适用 BZOJ1441 给 ...
- [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)
[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...
- 【BZOJ-1441】Min 裴蜀定理 + 最大公约数
1441: Min Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 471 Solved: 314[Submit][Status][Discuss] De ...
- BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)
一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...
- 【BZOJ】1441: Min(裴蜀定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
随机推荐
- mysql-介绍
1.mysql几个重要的文件 每个数据库新建后,会产生数据库文件夹,在该文件夹下每张表均对应以下三个文件: xx.frm 存放表结构 xx.MYD 存放表数据 xx.MYI 存放表索引 mys ...
- video.js使用技巧
https://www.awaimai.com/2053.html https://www.jianshu.com/p/16fa00a1ca8e
- rails小技巧之分组查询统计并去重
分组查询并统计 SpecialGroup.group(:special_type).count select special_type,count(*) from special_groups gro ...
- 《深入浅出MFC》– Document-View深入探讨
1.其实Document/View不是什么新东西,Xerox PARC实验室是这种观念的滥觞.它是Smalltalk环境中的关键性部分,在那里它被称为Model-View-Controller(MVC ...
- linux文件操作篇 (二) 打开和关闭文件
2.1 打开文件和关闭文件 #include <sys/types.h>#include <sys/stat.h>#include <fcntl.h> 头文件 i ...
- 安装 Node.js v8.0 生产环境
步骤://center os 上把apt-get换成yum 第一步:进入服务器升级工具包 sudo apt-get update 第二步:安装git sudo apt-get install git ...
- Educational Codeforces Round 47 (Rated for Div. 2) :C. Annoying Present(等差求和)
题目链接:http://codeforces.com/contest/1009/problem/C 解题心得: 题意就是一个初始全为0长度为n的数列,m此操作,每次给你两个数x.d,你需要在数列中选一 ...
- set<pair<int,int> > 的运用
In this cafeteria, the N tables are all ordered in one line, where table number 1 is the closest to ...
- Python3: 对两个字符串进行匹配
Python里一共有三种字符串匹配方式,用于判断一个字符串是否包含另一个字符串.比如判断字符串“HelloWorld”中是否包含“World”: def stringCompare(str1, str ...
- React实现最完整的百度搜索框
import React,{Component} from 'react' import ReactDOM,{render} from 'react-dom' import 'bootstrap/di ...