BZOJ2299 [HAOI2011]向量 【裴蜀定理】
题目链接
题解
题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\)
显然我们就可以得到一对四元方程组,用裴蜀定理判断一下方程有没有解即可
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL a,b,x,y,tmp;
LL gcd(LL a,LL b){return b ? gcd(b,a % b) : a;}
int main(){
int T = read();
while (T--){
a = read(); b = read(); x = read(); y = read();
if (a < b) swap(a,b);
tmp = gcd(gcd(2 * a * b,a * a + b * b),a * a - b * b);
if ((b * x - a * y) % tmp || (b * x + a * y) % tmp || (a * x - b * y) % tmp || (a * x + b * y) % tmp)
puts("N");
else puts("Y");
}
return 0;
}
BZOJ2299 [HAOI2011]向量 【裴蜀定理】的更多相关文章
- 【BZOJ-2299】向量 裴蜀定理 + 最大公约数
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1118 Solved: 488[Submit][Status] ...
- [HAOI2011] 向量 - 裴蜀定理
给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...
- BZOJ 2299 向量(裴蜀定理)
题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...
- [BZOJ1441&BZOJ2257&BZOJ2299]裴蜀定理
裴蜀定理 对于整系数方程ax+by=m,设d =(a,b) 方程有整数解当且仅当d|m 这个定理实际上在之前学习拓展欧几里得解不定方程的时候就已经运用到 拓展到多元的方程一样适用 BZOJ1441 给 ...
- [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)
[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...
- 【BZOJ-1441】Min 裴蜀定理 + 最大公约数
1441: Min Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 471 Solved: 314[Submit][Status][Discuss] De ...
- BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)
一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...
- 【BZOJ】1441: Min(裴蜀定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
随机推荐
- python练习笔记
python练习笔记,装饰器.定制方法生成特定的类 # -*- coding: utf-8 -*- def catch_exception(func): def wrap(self, *args, * ...
- Scrapy框架的基本使用
安装 pip install scrapy 基础使用 1. 创建一个工程:scrapy startproject 2. 在工程目录下创建一个爬虫文件 cd 工程 scrapy genspider 爬虫 ...
- Andy's First Dictionary(uva 10815) set用法
参考:https://www.cnblogs.com/yjlblog/p/6947747.html https://blog.csdn.net/hnust_taoshiqian/article/det ...
- Python3.6中PyInstaller不能对文件进行打包问题
上篇文章<itchat和matplotlib的结合使用爬取微信信息>是用python爬取信息得到微信朋友的信息,并且用matplotlib统计信息进行画图,所以今天想将它打包成.exe可执 ...
- react ant-design自定义图标
ant-design给我们提供的图标不够怎么办呢?答案是我们可以自定义图标. 自定义图标也挺简单的,现在图标推荐用svg格式,那么我们就需要制作svg图片. 下面让我们看看如果制作svg图片吧. 1. ...
- Linux(centos)搭建SVN服务器完美方案及遇到的问题--费元星站长
QQ:971751392 (欢迎交流) linux搭建SVN服务器 安装步骤如下: 1.yum install subversion 2.输入rpm -ql subversion查看安装位置,如下 ...
- 转MySQL详解--索引
写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储100条记录.如果没有索引,查询将 ...
- ExtJs4.1目录结构介绍和使用说明[转]
一.在做ExtJs开发之前首先要到网站上下载ExtJs的开发包,我用的最新版本是4.1.1.此版本相对于之前的版本目录结构发生了一些变化,没有了adapter目录, 目录结构如下 文件/文件夹名的作用 ...
- 基于阿里云服务器Linux系统部署JavaWeb项目
前段时间刚完成一个JavaWeb项目,想着怎么部署到服务器上,边学边做,花了点时间终于成功部署了,这里总结记录一下过程中所遇到的问题及解决方法.之所以选择阿里云,考虑到它是使用用户最多也是最广泛的云服 ...
- 第十六篇 Python之迭代器与生成器
一.迭代器 一. 递归和迭代 生活实例说明什么是递归和迭代 A想去腾达大厦,问B怎么走路,B 说我不知道,我给你问问C,C也不知道,C又去问D,D知道,把路告诉了C,C又告诉B,B最后告诉A, 这就是 ...