Title Link

戳我

Title Solution

这道题可以运用组合数的思想啊,数位dp也可以,随便你怎么做,这里就讲一讲组合数的做法吧,要小于n,所以我们可以枚举n二进制下1的位置,在i-1后面选j个1.用组合数做一下就好了啊

code

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod=10000007;
int c[1011][1011],f[101];
int read(){
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x*f;
}
void init(){
for(int i=0;i<=1000;i++)
c[i][i]=c[i][0]=1;
for(int i=2;i<=1000;i++)
for(int j=1;j<i;j++)
c[i][j]=c[i-1][j]+c[i-1][j-1];
}
int ksm(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans;
}
main(){
int n=read(),ans=1,js=0;
init();
for(int i=50;i>=0;i--){
if((n>>i)&1){
for(int j=1;j<=i;j++)
f[js+j]+=c[i][j];
f[++js]++;
}
}
for(int i=1;i<=50;i++)
ans*=ksm(i,f[i]),ans%=mod;
printf("%lld",ans);
}

「BZOJ 3209」花神的数论题的更多相关文章

  1. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  2. bzoj3209:3209: 花神的数论题

    觉得还是数位dp的那种解题形式但是没有认真的想,一下子就看题解.其实还是设置状态转移.一定要多思考啊f[i][j]=f[i-1][j]+g[i-1][j] g[i][j]=f[i-1][j-1]+g[ ...

  3. 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...

  4. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  5. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  6. 「BZOJ 2534」 L - gap字符串

    「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...

  7. [BZOJ3209]花神的数论题 组合数+快速幂

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2498  Solved: 1129[Submit][Status][Disc ...

  8. [Bzoj3209]花神的数论题(数位dp)

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 1182[Submit][Status][Disc ...

  9. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

随机推荐

  1. [Kingdom Rush]团队分享:如何做塔防手游

    转自:http://www.gamelook.com.cn/2015/03/207324 GameLook报道/2014年11月,乌拉圭开发商Ironhide Studios发布的<Kingdo ...

  2. CGI/MIME/servlet术语解释

    CGI→一种协议, 一种标准, 一种规范 使用CGI协议, 能够让用户访问某些动态资源的时候, 触发web服务器, 让web服务器根据CGI协议能够调用外部(web服务器外部)的程序来执行处理这个动态 ...

  3. 关于Oracle to_char()函数中的IW,WW 周别显示

    1)ww的算法为每年1月1日为第一周开始,date+6为每一周结尾 例如20050101为第一周的第一天,而第一周的最后一天为20050101+6=20050107 公式 每周第一天 :date + ...

  4. hbase集群配置

    说明 安装 配置 启动 网页效果 一点废话 本文介绍hbase集群配置 说明 hbase想正确配置成功的前提是,你必须知道hadoop集群和zookeeper集群是如何配置的 安装 下载地址 http ...

  5. java成神之——线程操作

    线程 Future CountDownLatch Multithreading synchronized Thread Producer-Consumer 获取线程状态 线程池 ThreadLocal ...

  6. day-7心得

    面向对象高级语法部分 经典类vs新式类 把下面代码用python2 和python3都执行一下 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 ...

  7. Swift中用正规表达式判断String是否是手机号码

    func isTelNumber(num:NSString)->Bool { var mobile = "^1(3[0-9]|5[0-35-9]|8[025-9])\\d{8}$&qu ...

  8. [原创]Spring Boot + Mybatis 简易使用指南(二)多参数方法支持 与 Joda DateTime类型支持

    前言 今天在开发练习项目时遇到两个mybatis使用问题 第一个问题是mapper方法参数问题,在参数大于一个时,mybatis不会自动识别参数命名 第二个问题是Pojo中使用Joda DateTim ...

  9. vue简单路由(一)

    在项目中,将vue的单页面应用程序改为了多页面应用程序,因此在某些场景下,需要频繁的切换两个页面,因此考虑使用路由,这样会减少服务器请求. 使用vue-cli(vue脚手架)快速搭建一个项目的模板(w ...

  10. saltstack系列(一)——介绍与安装

    saltstack简介 saltstack 是服务器基础架构集中化管理平台.具备配置管理.远程执行.监控等功能. saltstack 基于python. 注意: puppet是一种Linux.Unix ...