what is feeding?

  通俗点说feed系统就是当你登陆进对应网站后:微信朋友圈的动态、人人网上看到的一件件新鲜事、新浪微博上推到你面前的一条条新围脖等等。系统中的每一条消息就是一个feed。feed的获取方式主要有两种:push(推)以及pull(拉)。也就是接下来所说的读扩散和写扩散。

  feed流业务最大的特点是“我们的主页由别人发布的feed组成”,获得朋友圈消息feed流集合,从技术上说,主要有“拉取”与“推送”两种方式。feed流的推与拉主要指的是这里。

feed的特点

  • 有好友关系,例如关注,粉丝

  • 我们的主页由别人发布的feed组成

feed的经典动作

  • 关注,取关

  • 发布feed

  • 拉取自己的主页feed流

feed的核心元数据

  • 关系数据

  • feed数据

feeding流之读扩散?

  例如:某feed系统里有ABCD四个用户,其中:

  • A关注了BC,D关注了B

  其关系存储又包含关注关系与粉丝关系,“A关注了BC,D关注了B”的潜台词是“B有两个粉丝AD,C有一个粉丝A”。

  • B发布过四条feed:msg1, msg3, msg5, msg10

  • C发布过两条feed:msg2, msg8

  每一个用户,都有一个feed队列,记录自己曾经发布的所有feed数据。

  在拉模式中,发布一条feed的流程非常简单,例如C新发布了一条msg12:

  此时只需往C的feed队列里加入一条feed即可。

  在拉模式中,取消关注的流程也非常简单,例如A取消关注C:

  此时只需要在A的关注列表里删除C,并在C的粉丝列表里删除A即可。

  在拉模式中,用户A获取“由别人发布的feed组成的主页”的过程比较复杂,此时需要:

    •   获取A的关注列表

  list<gz_uid> = select uid from GZ where uid=A

    •   获取所关注的用户发布的feed

  list<msg> = NULL;

  for(uid in list<gz_uid>){

   list<some_msg> =

  select * from F where uid=$uid offset | limit

   list<msg> += list<some_msg>;

  }

  • 对消息进行rank排序(假设按照发布时间排序),分页取出对应的一页feeds

  sort_msg_by_time(list<msg>);

  get_one_page(list<msg>, page_num);

  feed流的拉模式(“读扩散”)有什么优缺点?

  优点

    •   存储结构简单,数据存储量较小,关系数据与feed数据都只存一份

    •   取消关注,发布feed的业务流程非常简单

    •   存储结构,业务流程都比较容易理解,非常适合项目早期用户量、数据量、并发量不大时的快速实现

  缺点也显而易见:

    •   拉取朋友圈feed流列表的业务流程非常复杂

    •   有多次数据访问,并且要进行大量的内存计算,大量数据的网络传输,性能较低

  在拉模式中,系统的瓶颈容易出现在“用户所发布feed列表”的读取上,而每个用户发布feed的频率其实是很低的,此时,架构优化的核心是通过缓存降低数据存储磁盘IO。

  当用户量、数据量、并发量数据逐步增加之后,拉模式会慢慢扛不住了,需要升级优化,但对于“取消关注”与“发布feed”这两个写流程又会有冲击和影响。

feeding流之写扩散?

  推模式(写扩散),关系数据的存储与拉模式(读扩散)完全一样。

  feed数据,每个用户也存储自己发布的feed

  如上图:

    •   B曾经发布过1,3,5,10

    •   C曾经发布过2,8

  画外音:不妨设,这里的msgid按照feed的发布时间偏序。

  feed数据存储,与拉(读扩散)不同的是,每个用户还需要存储自己收到的feed流

  如上图:

    •   A关注了BC,所以A的接收队列是1,2,3,5,8,10

    •   D关注了B,所以D的接受队列是1,3,5,10

  在推模式(写扩散)中,获取“由别人发布的feed组成的主页”会变得异常简单,假设一页消息为3条feed,A如果要看自己朋友圈的第二页消息,直接返回1,2,3即可。

  画外音:第一页朋友圈是最新的消息,即5,8,10。

  在推模式(写扩散)中,发布一条feed的流程会更复杂一点。

  例如B新发布了一条msg12:

    •   在B的发布feed存储里加入消息12

    •   查询B全部粉丝AD

    •   在粉丝AD的接收feed存储里也加入消息12

  之所以该方案称为推模式(写扩散),就是因为,用户发布feed的时候:

    •   直接将feed推到了粉丝的接收列表里,故称为“推模式”

    •   不止写发布feed存储,而且要写多个粉丝的接收feed存储,故称为“写扩散”

  在推模式(写扩散)中,添加关注的流程也会变得复杂。

  例如D新增关注C:

    •   在D的关注存储里添加C

    •   在C的粉丝存储里添加D

    •   在D的接收feed存储里加入C发布的feed

  画外音:有些产品有这样的逻辑,“关注之后才能看到feed”,这样的话就不需要第三步,旧feed无需插入。

  在推模式(写扩散)中,取消关注的流程也会变得复杂。

  例如A取消关注C:

    •   在A的关注存储里删除C

    •   在C的粉丝存储里删除A

    •   在A的接收feed存储里删除C发布的feed

  feed流的推模式(写扩散)的优点是:

    •   消除了拉模式(读扩散)的IO集中点,每个用户都读自己的数据,高并发下锁竞争少

  画外音:拉模式(读扩散)中,用户发布feed存储容易称为IO瓶颈。

    •   拉取朋友圈feed流列表的业务流程异常简单,速度很快

    •   拉取朋友圈feed流列表,不需要进行大量的内存计算,网络传输,性能很高

  画外音:feed业务是典型的读多写少业务场景,读写比甚至高于100:1,即平均发布1条消息,有至少100次阅读。

  其缺点是:

    •   极大极大消耗存储资源,feed数据会存储很多份,例如杨幂5KW粉丝,她每次一发博文,消息会冗余5KW份

  画外音:有朋友提出,可以存储一份消息实体,只冗余msgid,这样的话,拉取feed流列表时,还要再次拉取实体,网络时延会更长,所以很多公司选择直接冗余消息实体,当然,这是一个用户体验与存储量的折衷设计。

    •   新增关注,取消关注,发布feed的业务流会更复杂

小结

  feed流业务的推拉模式小结:

    •   拉模式,读扩散,feed存一份,存储小,用户集中访问数据,性能差

    •   推模式,写扩散,feed存多份,用冗余存储换锁冲突,性能高

what is feeding and what is 读扩散 and 写扩散?的更多相关文章

  1. C#多线程:使用ReaderWriterLock类实现多用户读/单用户写同步

    摘要:C#提供了System.Threading.ReaderWriterLock类以适应多用户读/单用户写的场景.该类可实现以下功能:如果资源未被写操作锁定,那么任何线程都可对该资源进行读操作锁定, ...

  2. 改动Oracle GoldenGate(ogg)各个进程的读检查点和写检查点

    请注意:请谨慎改动Oracle GoldenGate(ogg)各个进程的读检查点和写检查点. 请确保已经 掌握 ogg 各个进程的读检查点和写检查点的详细含义. BEGIN {NOW | yyyy-m ...

  3. laravel(lumen)配置读写分离后,强制读主(写)库数据库,解决主从延迟问题

    在Model里面加上下面这句,强制读主(写)库数据库,解决主从延迟问题. public static function boot() { //清空从连接,会自动使用主连接 DB::connection ...

  4. 【转】Linux中文件的可读,可写,可执行权限的解读以及chmod,chown,chgrp命令的用法

    chmod是更改文件的权限 chown是改改文件的属主与属组 chgrp只是更改文件的属组. 一.文件权限解读 如上图所示,开头的-rwxrw-r--这一字符串标识文件权限. 这个字符串有10位,可以 ...

  5. 使用ReaderWriterLock类实现多用户读/单用户写同步

    使用ReaderWriterLock类实现多用户读/单用户写同步[1] 2015-03-12 应用程序在访问资源时是进行读操作,写操作相对较少.为解决这一问题,C#提供了System.Threadin ...

  6. operator[],识别读操作和写操作

    body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...

  7. HBase 的Get(读),Put(写),Delete(删),Scan(扫描)和Increment(列值递增)

    一.HBase介绍 1.基本概念 HBase是一种Hadoop数据库,经常被描述为一种稀疏的,分布式的,持久化的,多维有序映射,它基于行键.列键和时间戳建立索引,是一个可以随机访问的存储和检索数据的平 ...

  8. python学习二十一天文件可读,可写,可执行的操作

    文件无非是可读,可写,可执行的操作,分别对应的模式 r ,w,x,只读模式,只写模式,只执行模式,a模式为追加模式,实际也是写操作模式,r+,w+,a+ 可读写模式,下面详细说模式的用法 1,文件的模 ...

  9. C#操作XML(读XML,写XML,更新,删除节点,与dataset结合等)【转载】

    已知有一个XML文件(bookstore.xml)如下: Corets, Eva 5.95 1.插入节点 往节点中插入一个节点: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

随机推荐

  1. Eclipse equinox implementation of OSGi

    Bundle package org.osgi.framework; public interface Bundle extends Comparable<Bundle> { int UN ...

  2. RecycleView + SwipeRefreshLayout 实现下拉刷新和底部自动加载

    前段时间项目里面使用了RecycleView 但是里面的刷新和加载都是框架里面封装好的,直接使用 这几天比较闲就自己来实现以下. 因为SwipeRefreshLayout是一个下拉刷新控件所有直接和R ...

  3. django-1-应用开发基本套路

    Django 开发基本流程 创建项目 创建应用 修改配置文件 设计数据模型 后台管理注册 编写业务视图 编写模板文件 设置URL 访问测试/调试 部署上线 创建项目 django-admin star ...

  4. Business Component(BC)和Business Object(BO)

    Siebel应用架构的一个成功的地方就是在应用里引入了BC,BO的概念,从而使得几千张关系数据表能够按照业务的含义组织成业务对象,对于业务人员而言具有了业务上的含义,而不仅仅是从技术人员的观点来对待数 ...

  5. Java 实现斐波那契数列

    public class Fibonacci { private static int getFibo(int i) { if (i == 1 || i == 2) return 1; else re ...

  6. SQL专题

    1. 值为null的字段,假如update table set a=a+1,则会报sql错误 2. //todo

  7. 【转载】#446 - Deciding Between an Abstract Class and an Interface

    An abstract class is a base class that may have some members not implemented in the base class, but ...

  8. BZOJ4520:[CQOI2016]K远点对(K-D Tree)

    Description 已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对. Input 输入文件第一行为用空格隔开的两个整数 N, K.接下来 N 行,每行两个整数 X,Y,表示一个点 的坐标 ...

  9. IO缓冲区

    标准IO提供的三种类型的缓冲模式: (1)按块缓存:在填满缓冲区后才进行实际的设备读写操作 (2)按行缓存:指在接收到换行符('\n’)之前,数据都是先缓存在缓冲区的 (3)不缓存:允许你直接读写设备 ...

  10. PAML学习一

    前言 模式识别起源于工程,而机器学习从计算机科学中产生.然而这两者被看做同一领域的两方面,过去十年里他们获得了极大的发展.特别是,贝叶斯方法已经发展成主流,而图模型已经被融入用于描述和应用概率模型的通 ...