我真傻,真的

我单知道这道题在(b-b1)%d!=0时要判无解,哪成想自己却没有读完这组后面的数据而直接break掉。。。qwqfk


$ x \equiv b_1 (  mod    a_1  ) $

$ x \equiv b_2   ( mod  a_2 )  $

....

$x  \equiv b_n (mod a_n)$

$a_1,a_2,...,a_n$

不互质时,正常的中国剩余定理是用不了的

所以有了EX版

求解:

我们先看第1,2个方程,它们可以转化为:

x=a1*k1+b1, (I)

x=a2*k2+b2;

进而a1*k1+b1=a2*k2+b2,所以有:

a1*k1-a2*k2=b2-b1

进一步就是 a1*k1+a2*(-k2)=b2-b1  (II)

把他转化为exgcd求解的形式:ax+by=c,a就是a1,x就是k1,b就是a1,y就是-k2,c就是b2-b1;

此时可以求出(I)的一组特解,即a1*k1+a2*(-k2)=gcd(a1,a2)时,k1的值。

显然,当(b2-b1)不能被gcd(a1,a2)整除时,(1)无解;

若有解,(I)的解就是 k1*(b2-b1)/gcd(a1,a2),

注意此时算出来k1要mod (a2/gcd(a1,a2)),这相当于是给k1减去了floor(k1/(a2/gcd(a1,a2)))*(a2/gcd(a1,a2)),给k2加上了floor(k1/(a2/gcd(a1,a2)))*(a1/gcd(a1,a2)),防止爆long long;

然后将k1带回原式,则x=a1*k1+b1

此时,你得到了满足第1,2两个方程的解,

那么我们显然又有一个结论:

最终的ans ≡ x (mod lcm(a1,a2))

所以我们又有了:
x≡b12 (mod a12) (*)

其中b12=第1,2两个方程的解,即上一行的x;a12=lcm(a1,a2)

那么我们就可以拿(*)和条件中的第3个方程去重复上面的操作。

一直重复下去,直到解出最终的解

注:代码中的a相当于a1,a1相当与a2

#include<cstdio>
#include<iostream>
#define ll long long
#define R register ll
using namespace std;
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
inline ll exgcd(ll a,ll b,ll& x,ll& y) {
if(b==) {x=,y=; return a;}
R d=exgcd(b,a%b,y,x); y-=(a/b)*x; return d;
}
int n;
signed main() {
while(~scanf("%d",&n)) { register bool flg=false;
R a=g(),b=g(),k,k1;
for(R i=;i<=n;++i) {
R a1=g(),b1=g(); if(flg) continue;
R d=exgcd(a,a1,k,k1);
if((b1-b)%d) flg=true;
else {
k=(b1-b)/d*k%a1;
b+=a*k;
a=a*a1/d;
b%=a;
}
} if(flg) printf("-1\n");
else printf("%lld\n",(b%a+a)%a);
}
}

2019.05.15纪念自己的沙雕石刻qwq

POJ 2891 Strange Way to Express Integers excrt/我真傻,真的的更多相关文章

  1. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  2. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  3. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  4. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  5. [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)

    题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...

  6. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  7. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  8. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

  9. POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】

    求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...

随机推荐

  1. 错误名称:Uncaught SyntaxError: Unexpected identifier

    控制台输出: 1.谷歌:Uncaught SyntaxError: Unexpected identifier 2.火狐:SyntaxError: missing ] after element li ...

  2. 原来问题在这里-我的memory leak诊断历程

    自从公司开始将java作为主要开发语言后,C++与java的混合应用日趋增多. java与C++的通信主要也是使用JNI来完成,这并没有什么问题.对于这样的混合应用项目来说,最大的噩梦莫过于memor ...

  3. Mesos提交任务没有被执行

    当通过marathon提交了一个任务后,发现一直处于waiting状态: 回到mesos,执行MASTER=$(mesos-resolve `cat /etc/mesos/zk`) &  me ...

  4. Azure PIP (Instance Level Public IP)

    微软的Azure平台已经支持Instance Level Public IP功能.当有复杂协议的情况下,需要开启多个端口的情况下,可以考虑开启PIP功能. 先介绍几个概念: VIP – virtual ...

  5. mount error(12): Cannot allocate memory解决办法

    http://hi.baidu.com/zhangbin101004/item/e459f4d1f818dfbd33db903b 今天囧了啊,在ubuntu挂载的文件夹里面解压数据库,结果linux嫌 ...

  6. keepalived+redis 高可用redis主从解决方案

    背景介绍: 目前,Redis还没有一个类似于MySQL Proxy或Oracle RAC的官方HA方案.#Redis 2.8版开始正式提供名为Sentinel的主从切换方案(后面附上,未测试) 因此, ...

  7. C++模板特化编程

    在C++中,模板特化是除了类之外的一种封装变化的方法.模板特化可以通过编译器来对不同的模板参数生成不同的代码. 模板特化通常以模板结构体作为载体.常用技法包括:类型定义.静态成员常量定义和静态成员函数 ...

  8. day18-事务与连接池 4.事务特性

  9. 【spring boot logback】日志颜色渲染,使用logback-spring.xml自定义的配置文件后,日志没有颜色了

    接着spring boot日志logback解析之后,发现使用logback-spring.xml自定义的配置文件后,日志没有颜色了 怎么办? 官网处理日志链接:https://logback.qos ...

  10. 机器学习--K折交叉验证和非负矩阵分解

    1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...