POJ 2891 Strange Way to Express Integers excrt/我真傻,真的
我真傻,真的
我单知道这道题在(b-b1)%d!=0时要判无解,哪成想自己却没有读完这组后面的数据而直接break掉。。。qwqfk
当
$ x \equiv b_1 ( mod a_1 ) $
$ x \equiv b_2 ( mod a_2 ) $
....
$x \equiv b_n (mod a_n)$
且
$a_1,a_2,...,a_n$
不互质时,正常的中国剩余定理是用不了的
所以有了EX版
求解:
我们先看第1,2个方程,它们可以转化为:
x=a1*k1+b1, (I)
x=a2*k2+b2;
进而a1*k1+b1=a2*k2+b2,所以有:
a1*k1-a2*k2=b2-b1
进一步就是 a1*k1+a2*(-k2)=b2-b1 (II)
把他转化为exgcd求解的形式:ax+by=c,a就是a1,x就是k1,b就是a1,y就是-k2,c就是b2-b1;
此时可以求出(I)的一组特解,即a1*k1+a2*(-k2)=gcd(a1,a2)时,k1的值。
显然,当(b2-b1)不能被gcd(a1,a2)整除时,(1)无解;
若有解,(I)的解就是 k1*(b2-b1)/gcd(a1,a2),
注意此时算出来k1要mod (a2/gcd(a1,a2)),这相当于是给k1减去了floor(k1/(a2/gcd(a1,a2)))*(a2/gcd(a1,a2)),给k2加上了floor(k1/(a2/gcd(a1,a2)))*(a1/gcd(a1,a2)),防止爆long long;
然后将k1带回原式,则x=a1*k1+b1
此时,你得到了满足第1,2两个方程的解,
那么我们显然又有一个结论:
最终的ans ≡ x (mod lcm(a1,a2))
所以我们又有了:
x≡b12 (mod a12) (*)
其中b12=第1,2两个方程的解,即上一行的x;a12=lcm(a1,a2)
那么我们就可以拿(*)和条件中的第3个方程去重复上面的操作。
一直重复下去,直到解出最终的解
注:代码中的a相当于a1,a1相当与a2
#include<cstdio>
#include<iostream>
#define ll long long
#define R register ll
using namespace std;
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
inline ll exgcd(ll a,ll b,ll& x,ll& y) {
if(b==) {x=,y=; return a;}
R d=exgcd(b,a%b,y,x); y-=(a/b)*x; return d;
}
int n;
signed main() {
while(~scanf("%d",&n)) { register bool flg=false;
R a=g(),b=g(),k,k1;
for(R i=;i<=n;++i) {
R a1=g(),b1=g(); if(flg) continue;
R d=exgcd(a,a1,k,k1);
if((b1-b)%d) flg=true;
else {
k=(b1-b)/d*k%a1;
b+=a*k;
a=a*a1/d;
b%=a;
}
} if(flg) printf("-1\n");
else printf("%lld\n",(b%a+a)%a);
}
}
2019.05.15纪念自己的沙雕石刻qwq
POJ 2891 Strange Way to Express Integers excrt/我真傻,真的的更多相关文章
- poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 9472 ...
- poj——2891 Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 16839 ...
- [POJ 2891] Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 10907 ...
- POJ 2891 Strange Way to Express Integers(拓展欧几里得)
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...
- [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)
题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...
- poj 2891 Strange Way to Express Integers(中国剩余定理)
http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd
http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法
http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...
- POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】
求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...
随机推荐
- POJ3565 Ants 和 POJ2195 Going Home
Ants Language:Default Ants Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7975 Accepted: ...
- 扩展欧几里得算法(exgcd)
Bezout定理: 对于任意整数a,b,存在一对整数x,y满足:a*x+b*y=gcd(a,b) 证明如下: 在欧几里得算法的最后一步:b=0,即:gcd(a,0)=a 对于b>0,根据欧几里得 ...
- 如何恢复,迁移,添加, 删除 Voting Disks
如何恢复,迁移,添加, 删除 Voting Disks恢复流程 在11gR2 之前,我们可以直接直接使用dd命令对voting disk进行备份.DD示例 备份votedisk盘:[root@raw1 ...
- 洛谷 2312 / bzoj 3751 解方程——取模
题目:https://www.luogu.org/problemnew/show/P2312 https://www.lydsy.com/JudgeOnline/problem.php?id=3751 ...
- 51单片机的TXD、 RXD 既接了 232 又接了 485芯片 ,会导致通信失败!
51单片机的TXD. RXD 既接了 232 又接了 485 ,会导致通信失败! 下面是绘制电路板用的部分电路图: 通信现象: 1.我使用了USB-232的下载模块,把它接到P4上,发现单片机只能发送 ...
- 奇异值分解(SVD)详解
2012-04-10 17:38 45524人阅读 评论(18) 收藏 举报 分类: 数学之美 版权声明:本文为博主原创文章,未经博主允许不得转载. SVD分解 SVD分解是LSA的数学基础,本文是 ...
- Windchill
判断某查询栏位是否为空 错误:if (projComp != null && !projComp.equals("")) 正确:if((projComp != nu ...
- [#413c] Fountains
http://codeforces.com/contest/799/problem/C 解题关键:树状数组取最大值,注意先搜索,后加入,此种情况可以取出最大值. 为什么可以取到最大值? 1.当分别用两 ...
- tensorflow session会话控制
import tensorflow as tf # create two matrixes matrix1 = tf.constant([[3,3]]) matrix2 = tf.constant([ ...
- 6.6 Ubuntu 安装 截图工具 Shutter
可参考: http://blog.csdn.net/hanshileiai/article/details/46843713