【BZOJ3622】已经没有什么好害怕的了(动态规划+广义容斥)
大致题意: 有\(n\)个糖果和\(n\)个药片,各有自己的能量。将其两两配对,求糖果比药片能量大的组数恰好比药片比糖果能量大的组数多\(k\)组的方案数。
什么是广义容斥(二项式反演)
我们首先来介绍一下什么是广义容斥。
我们要证明下面这样一个式子:
\]
观察右边这个式子,我们将\(f_n=\sum_{i=0}^nC_n^ig_i\)代入就可以得到:
\]
把\(C_n^i\)移入,可以得到:
\]
通过暴力展开我们可以证明\(C_n^iC_i^j=C_n^jC_{n-j}^{i-j}\),代入得:
\]
然后我们调换\(i\)和\(j\)的枚举顺序,并让\(i\)变为原先的\(n-i-j\)可得:
\]
然后代入二项式定理(因此这又称为二项式反演)\((x+y)^n=\sum_{i=0}^nC_n^ix^iy^{n-i}\)得:
\]
由于式子中出现了一个\(0^{n-j}\),因此只有当\(n-j=0\),即\(n=j\)时,该式才有值,代入得:
\]
因此原式恒成立,得证。
简单转化
恰好多\(k\)组这个条件不是很好求,所以我们可以将其转化一下。
由于总数\(n\)是固定的,所以我们容易求出糖果比药片能量大的组数应为\(\frac{n+k}2\)。
动态规划
接下来,我们就要使用\(DP\)了。
首先,我们把糖果和药片分别按能量排一边序。
则这样可以保证后枚举到的的糖果所能胜过的药片的区间一定能覆盖先枚举到的糖果的区间。
然后,设\(f_{i,j}\)表示糖果匹配到第\(i\)个,且已经与\(j\)个药片匹配的方案数,并设\(g_i\)表示能与第\(i\)个糖果匹配的药片数,则我们可以推出转移方程为:
\]
广义容斥
从前面\(DP\)得到的\(f_{n,i}\),我们可以轻松推得糖果大于药片的对数大于等于\(i\)的方案数。
由于我们已经确定了\(i\)对,而剩下的\((n-i)\)对实际上可以随意匹配,因此便是一个全排列。即:
\]
我们可以设\(F_i\)表示糖果大于药片的对数恰好等于\(i\)的方案数,则可得:
\]
然后用先前提到的广义容斥,就可以得到:
\]
已知糖果比药片能量大的组数应为\(\frac{n+k}2\),则\(F_{\frac{n+k}2}\)即为答案。
而这可以直接求。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 2000
#define X 1000000009
#define Qinv(x) Qpow(x,X-2)
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
#define C(x,y) (1LL*Fac[x]*Inv[y]%X*Inv[(x)-(y)]%X)
using namespace std;
int n,k,a[N+5],b[N+5],g[N+5],Fac[N+5],Inv[N+5],f[N+5][N+5];
I int Qpow(RI x,RI y) {RI res=1;W(y) y&1&&(res=1LL*res*x%X),x=1LL*x*x%X,y>>=1;return res;}//快速幂
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C^FS?FO[C++]=c:(fwrite(FO,1,C,stdout),FO[(C=0)++]=c))
#define tn(x) (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T,C;char c,*A,*B,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn(x)+(c&15),D);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
I void clear() {fwrite(FO,1,C,stdout),C=0;}
}F;
int main()
{
RI i,j,t,ans=0;for(F.read(n,k),i=1;i<=n;++i) F.read(a[i]);for(i=1;i<=n;++i) F.read(b[i]);//读入数据
for(sort(a+1,a+n+1),sort(b+1,b+n+1),i=1;i<=n;++i) {g[i]=g[i-1];W(g[i]^n&&a[i]>b[g[i]+1]) ++g[i];}//排序,然后求出g[i]
for(f[0][0]=i=1;i<=n;++i) for(j=0;j<=i;++j) f[i][j]=f[i-1][j],j&&Inc(f[i][j],1LL*f[i-1][j-1]*(g[i]-j+1)%X);//DP转移
for(Fac[0]=i=1;i<=n;++i) Fac[i]=1LL*Fac[i-1]*i%X;for(Inv[n]=Qinv(Fac[n]),i=n-1;~i;--i) Inv[i]=1LL*Inv[i+1]*(i+1)%X;//初始化阶乘及阶乘逆元
for(i=t=n+k>>1;i<=n;++i) Inc(ans,1LL*((i^t)&1?X-1:1)*C(i,t)%X*f[n][i]%X*Fac[n-i]%X);//求出最终答案
return F.write(ans),F.clear(),0;//输出答案
}
【BZOJ3622】已经没有什么好害怕的了(动态规划+广义容斥)的更多相关文章
- bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1033 Solved: 480[Submit][Status][ ...
- BZOJ - 3622:已经没有什么好害怕的了 (广义容斥)
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划,容斥)
[BZOJ3622]已经没有什么好害怕的了(动态规划,容斥) 题面 BZOJ 题解 很明显的,这类问题是要从至少变成恰好的过程,直接容斥即可. 首先我们要求的是(糖果>药片)=(药片>糖果 ...
- BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学
原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...
- 洛谷P4859 已经没有什么好害怕的了 [DP,容斥]
传送门 思路 大佬都说这是套路题--嘤嘤嘤我又被吊打了\(Q\omega Q\) 显然,这题是要\(DP\)的. 首先思考一下性质: 为了方便,下面令\(k=\frac{n+k}{2}\),即有恰好\ ...
- BZOJ 3622 : 已经没有什么好害怕的了(dp + 广义容斥原理)
今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \ ...
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- [BZOJ3622]已经没有什么好害怕的了(容斥DP)
给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...
- BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...
随机推荐
- 02Data
1.数据从何而来 2.数据对象和属性类型 数据集合的类型 结构数据的重要特征 数据对象 属性 属性类型 数据属性的类型 离散 vs.连续属性 3.数据的(基本)统计描述 分布度量 代数度量 整体度量 ...
- 用vector实现二维向量
如果一个向量的每一个元素是一个向量,则称为二维向量,例如 vector<vector<int> >vv(3, vector<int>(4));//这里,两个“> ...
- my16_sql_thread执行慢导致主从延迟高的一个情景
现象:从库延迟高,查看slave status发现sql_thread执行语句的速度比主库慢,这样的延迟会一直高下去,下面是排查的一些过程1. 检查了从库的配置,磁盘的写入速度的确没有主库高2. io ...
- shiro【filter】
alt+7 OncePerRequestFilter public final void doFilter(ServletRequest request, ServletResponse respon ...
- 移动测试之appium+python 入门代码(四)
最近工作中想要做自动化回归测试,想法是将每个测试用例都做自动截图,然后将最近的稳定版本和当前测试的版本的两张截图去对比,也要将两个版本的截图都放到测试报告中方便人工来进行验证.最初想法是通过HTMLT ...
- JavaSE---死锁
1.死锁: 当2个线程互相等待对方释放 同步监视器 时就会发生死锁,JVM没有监测,也没有采取任何措施来避免死锁(当出现死锁时,整个程序既不会发生任何异常,也不会有任何提示, 所有线程处于阻塞状态 ...
- [转]jQuery页面滚动图片等元素动态加载实现
本文转自:http://www.zhangxinxu.com/wordpress/?p=1259 一.关于滚动显屏加载 常常会有这样子的页面,内容很丰富,页面很长,图片较多.比如说光棍节很疯狂的淘宝商 ...
- IO流等学习笔记
1.为什么日期的开始是从1970年0101开始记录,计算机的日期记录是现在的时间距1970年的时间,可正可负.? 2.引用类型默认都为null,基本数据类型为0,除基本数据类型外所有的都为引用数据类型 ...
- 使用java的 htpUrlConnection post请求 下载pdf文件,然后输出到页面进行预览和下载
使用java的 htpUrlConnection post请求 下载pdf文件,然后输出到页面进行预览和下载 2018年06月07日 10:42:26 守望dfdfdf 阅读数:235 标签: jav ...
- JQuery Dialog对话框 不能通过Esc关闭
背景:想通过Esc键关闭展示中的Dialog对话框,发现有些对话框可以,有些会失效. 原因分析: 1.对话框上可以输入内容的标签元素可以,反之不行. 2.如果鼠标点击对话框后,也可以Esc键关闭. 可 ...