原题传送门

这道题瞄了一眼还以为是SPFA最短路。

后面发现距离为2.。

好像可以枚举中间点来着?

时间效率O(n*(2n-2))≈O(n^2)

BOOM!(PS:9018上过了,说明数据太水了。。)

然后我们看看能不能预处理。。

第一大和第二大可以预处理233~

然后sum(中间点的临近点的权值总和)可以预处理。。。

然后就过了?O(n)

哦,对了忘记讲算法:

最大的联合权值就是中间点的临近点的第一大*第二大。。

所有的联合权值。。

我们假设有三个点a,b,c 那么联合权值=ab+ac+ba+bc+ca+cb=a(b+c)+b(a+c)+c(a+b)=a(sum-a)+b(sum-b)+c(sum-c);

然后就可以O(n)啦!

O(∩_∩)O~~。。

下面先贴O(n^2)代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define mod 10007
using namespace std;
int n,num=;
struct edge{
int to,next;
}g[];
int head[],sum=;
int w[];
void ins(int x1,int y1)
{
g[++num].next=head[x1];
head[x1]=num;
g[num].to=y1;
}
void addedge(int x1,int y1)
{
ins(x1,y1);
ins(y1,x1);
}
int main(){
scanf("%d",&n);
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
addedge(x,y);
}
for(int i=;i<=n;i++)
scanf("%d",&w[i]);
int ans1=,ans2=;
for(int i=;i<=n;i++)
{
int max1=-,max2=-;
for(int j=head[i];j;j=g[j].next)
{
int tmp=w[g[j].to];
sum+=tmp;
sum%=mod;
if(tmp>max1)
{
max2=max1;
max1=tmp;
}
else if(tmp>max2)
{
max2=tmp;
}
}
ans1=max(ans1,max1*max2);
for(int j=head[i];j;j=g[j].next)
{
ans2+=(w[g[j].to]*(sum-w[g[j].to]))%mod;
ans2%=mod;
}
sum=;
}
ans2=(ans2+mod)%mod;
printf("%d %d\n",ans1,ans2);
return ;
}

再贴O(N)代码(为啥比上面的还慢。。)

#include<iostream>
#include<cstdio>
#include<cstring>
#define mod 10007
using namespace std;
int n,num=;
struct edge{
int to,from;
}g[];
int head[];
int w[];
int max1[],max2[];
int sum[];
void ins(int x1,int y1)
{
g[++num].to=y1;
g[num].from=x1;
}
void work(int q,int r){
if(w[q]>max1[r])
{
max2[r]=max1[r];
max1[r]=w[q];
}
else if(w[q]>max2[r]) max2[r]=w[q];
}
int main(){
scanf("%d",&n);
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
ins(x,y);
}
for(int i=;i<=n;i++)
scanf("%d",&w[i]);
int ans1=,ans2=;
for(int i=;i<n;i++)
{
int u=g[i].from,v=g[i].to;
sum[u]=(sum[u]+w[v])%mod;
sum[v]=(sum[v]+w[u])%mod;
work(u,v);
work(v,u);
} for(int i=;i<=n;i++)ans1=max(ans1,max1[i]*max2[i]);
for(int i=;i<n;i++)
{
int u=g[i].from,v=g[i].to;
ans2+=(w[u]*(sum[v]-w[u]))%mod;
ans2%=mod;
ans2+=(w[v]*(sum[u]-w[v]))%mod;
ans2%=mod;
}
ans2=(ans2+mod)%mod;
printf("%d %d\n",ans1,ans2);
return ;
}

联合权值(NOIP2014)奇特的模拟。。的更多相关文章

  1. [Luogu 1351] NOIP2014 联合权值

    [Luogu 1351] NOIP2014 联合权值 存图,对于每一个点 \(u\),遍历它的所有邻接点.以 \(u\) 为中转点的点对中,\((x,y)\) 的联合权值 \(w_x \cdot w_ ...

  2. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  3. Noip2014 提高组 T2 联合权值 连通图+技巧

    联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...

  4. NOIP2014 联合权值

    2.联合权值 (link.cpp/c/pas) [问题描述] 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi  ,每条边的长度均为1.图上两点(u, v)的距离定义为u ...

  5. NOIP2014提高组第二题联合权值

    还是先看题吧: 试题描述  无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi ,每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 ...

  6. 【NOIP2014提高组】联合权值

    https://www.luogu.org/problem/show?pid=1351 既然是一棵树,就先转化成有根树.有根树上距离为2的点对,路径可能长下面这样: 枚举路径上的中间点X. 第一种情况 ...

  7. 【NOIP2014】联合权值 树上dp

    题目描述 Description 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i   ,每条边的长度均为1 .图上两点( u ,  v ) 的距离定 ...

  8. 【洛谷P1351】[NOIP2014]联合权值

    联合权值 题目链接 首先,直接两重循环暴力枚举得了70分 然后发现第二重循环可以记忆化一下 记忆一下每个点的子节点的权值和.最大值. 次大值(为了处理该点的父节点权值恰好为最大值) 具体看代码 #in ...

  9. NOIP2014提高组 联合权值(距离为2的树形dp)

    联合权值 题目描述 无向连通图 GG 有 nn 个点,n-1n−1 条边.点从 11 到 nn 依次编号,编号为 ii 的点的权值为 W_iWi​,每条边的长度均为 11.图上两点 (u, v)(u, ...

随机推荐

  1. C语言进阶——浮点数的秘密03

    浮点数在内存中的储存方式为:符号位 指数位 尾数 float和double类型的数据在计算机内部的表实方法是一样的,但是由于所占的存贮空间的不同,其分别能表示的数值范围和精度不同. 类型 f符号位 指 ...

  2. SpringMVC使用注解@RequestMapping映射请求

    pringMVC通过使用@RequestMapping注解,实现指定控制器可以处理哪些URL请求. 控制器的类定义及方法定义处都可以标注@RequestMapping: 类定义处:提供初步的请求映射信 ...

  3. 关于原生JS获取class,ID等属性的一些封装

    一.传统上获取是通过document.getElementById获取元素的ID属性,通过总结与学习总结一下获取元素class以及id属性的一些封装; 1.创建构造函数,这里面不需要多解释什么:(主要 ...

  4. 剑指Offer - 九度1283 - 第一个只出现一次的字符

    剑指Offer - 九度1283 - 第一个只出现一次的字符2013-11-21 21:13 题目描述: 在一个字符串(1<=字符串长度<=10000,全部由大写字母组成)中找到第一个只出 ...

  5. 《Cracking the Coding Interview》——第6章:智力题——题目4

    2014-03-20 01:02 题目:无力描述的一道智力题,真是货真价实的智力题,让我充分怀疑自己智力的智力题.有兴趣的还是看书去吧. 解法:能把题目看懂,你就完成80%了,用反证法吧. 代码: / ...

  6. (原)C sharp杂谈记事(一)

    题记)最是那一低头的温柔,像一朵睡莲花不胜凉风的娇羞 1)接收 公司的X部门有个APP小项目,APP后台是C sharp的MVC,提供了一个C sharp的web from做管理员操作的后台操作,此项 ...

  7. 转载——一步步学习js

    一步步学习javascript基础篇(0):开篇索引 阅读目录 索引: 一步步学习javascript基础篇(1):基本概念 一步步学习javascript基础篇(2):作用域和作用域链 一步步学习j ...

  8. 【Python】python常用模块

    一.模块.包 什么是模块? 模块实质上就是一个python文件,它是用来组织代码的,意思就是说把python代码写到里面,文件名就是模块的名称,test.py test就是模块名称. 什么是包? 包, ...

  9. Java基础-6流程控制

    一).选择控制: 选择控制分为两种:if...else...和switch 单分支结构:这是最简单的一种选择结构,它只是简单的判断某个条件是否成立,如果成立就执行一段代码,语句形式为: if(条件表达 ...

  10. linux备忘录-文件系统管理

    Extx 文件系统原理 block group 每个分区(partition)的组成为 boot sector -> block group -> block group -> bl ...