luogu 3806 【模板】点分治
luogu 3806 【模板】点分治
给定一棵有n个点的树,有m个询问,每个询问树上距离为k的点对是否存在。树的权值最多不超过c。n<=10000,m<=100,c<=1000,K<=10000000。
关于树的路径的问题,点分治是一种最吼的工具。由于这道题的m比较小,枚举k,通过set保存每颗子树中点的路径值,在set中查询每个k值是否成立即可。似乎空间消耗很小,只用了2.3mb。
#include <set>
#include <cctype>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1e4+5;
struct Graph{
struct Edge{
int to, next, v; Graph *bel;
Edge& operator ++(){
return *this=bel->edge[next]; }
}edge[maxn*2];
int cnte, fir[maxn];
void addedge(int x, int y, int v){
Edge &e=edge[++cnte];
e.to=y; e.next=fir[x]; e.v=v;
fir[x]=cnte; e.bel=this;
}
Edge& getlink(int x){ return edge[fir[x]]; }
void RESET(){
cnte=0; memset(fir, 0, sizeof(fir)); }
}g;
int n, m, k[maxn], size[maxn], f[maxn];
int dep[maxn], tail;
set<int> s;
bool done[maxn], hasans[maxn];
//获取子树大小和最大子树大小
void predfs(int now, int par, int num){
Graph::Edge e=g.getlink(now);
size[now]=1; f[now]=0;
for (; e.to; ++e){
if (e.to==par||done[e.to]) continue;
predfs(e.to, now, num);
size[now]+=size[e.to];
f[now]=max(f[now], size[e.to]);
}
f[now]=max(f[now], num-size[now]);
}
//找到根
int getroot(int now, int par){
Graph::Edge e=g.getlink(now);
int core=now, t;
for (; e.to; ++e){
if (e.to==par||done[e.to]) continue;
t=getroot(e.to, now);
if (f[t]<f[core]) core=t;
}
return core;
}
//获取到所有点的深度
void getdep(int now, int par, int step){
Graph::Edge e=g.getlink(now);
for (; e.to; ++e) if (e.to!=par&&!done[e.to])
getdep(e.to, now, step+e.v);
dep[++tail]=step;
for (int i=1; i<=m; ++i)
if (s.find(k[i]-dep[tail])!=s.end())
hasans[i]=true;
}
void solve(int now, int par, int num){
predfs(now, 0, num); //预处理
if (size[now]==1) return;
now=getroot(now, 0); //找出重心
predfs(now, 0, num);
s.clear(); s.insert(0);
Graph::Edge e=g.getlink(now);
for (; e.to; ++e){
if (e.to==par||done[e.to]) continue;
tail=0;
getdep(e.to, now, e.v); //找出所有点的深度
for (int i=1; i<=tail; ++i)
s.insert(dep[i]);
}
//不能统计带有回头路的
e=g.getlink(now);
done[now]=true;
for (; e.to; ++e) if (e.to!=par&&!done[e.to])
solve(e.to, now, size[e.to]); //找子树
}
void get(int &x){
x=0; int flag=1; char c;
for (c=getchar(); !isdigit(c); c=getchar())
if (c=='-') flag=-flag;
for (x=c-48; c=getchar(), isdigit(c); )
x=(x<<3)+(x<<1)+c-48; x*=flag;
}
int main(){
get(n); get(m);
int t1, t2, t3;
for (int i=1; i<n; ++i){
get(t1); get(t2); get(t3);
g.addedge(t1, t2, t3);
g.addedge(t2, t1, t3);
}
for (int i=1; i<=m; ++i) get(k[i]);
solve(1, 0, n);
for (int i=1; i<=m; ++i) puts(hasans[i]?"AYE":"NAY");
return 0;
}
luogu 3806 【模板】点分治的更多相关文章
- Luogu 3806 点分治1
Luogu 3806 点分治 要分清楚各个函数的作用及互相调用的关系. 因为是无根树,找重心的时候,父亲一边的所有节点也可以看做是一颗子树. #include<bits/stdc++.h> ...
- luoguP4721 【模板】分治 FFT
P4721 [模板]分治 FFT 链接 luogu 题目描述 给定长度为 \(n-1\) 的数组 \(g[1],g[2],..,g[n-1]\),求 \(f[0],f[1],..,f[n-1]\),其 ...
- [luogu P3384] [模板]树链剖分
[luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...
- 洛谷 P4721 【模板】分治 FFT 解题报告
P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\d ...
- Luogu P2742 模板-二维凸包
Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...
- LG4721 【模板】分治 FFT
P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 $n-1$ 的数组 $g[1],g[2],..,g[n-1]$,求 $f[0],f[1],..,f[n-1]$ ...
- luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树)(主席树)
luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include< ...
- 模板·点分治(luogu P3806)
[模板]洛谷·点分治 1.求树的重心 树的重心:若A点的子树中最大的子树的size[] 最小时,A为该树的中心 步骤: 所需变量:siz[x] 表示 x 的子树大小(含自己),msz[x] 表示 其子 ...
- Luogu 4721 【模板】分治 FFT
还不会这题的多项式求逆的算法. 发现每一项都是一个卷积的形式,那么我们可以使用$NTT$来加速,直接做是$O(n^2logn)$的,我们考虑如何加速转移. 可以采用$cdq$分治的思想,对于区间$[l ...
随机推荐
- idea集成spring+spring MVC+mybatis问题
1.如果mybatis的xml文件放在java文件夹下(idea不会编译src的java目录的xml文件),需要在pom.xml中加入以下代码: <build> <resources ...
- 分享知识-快乐自己:PageHelper 分页关键基础代码
关键代码:点我下载样式 详细介绍 //使用分页插件 jQuery("#pagination").pagination(data.total, { items_per_page: ...
- strnpy函数
函数原型: char * strncpy ( char * destination, const char * source, size_t num ); 功能:从字符串source中复制 num个字 ...
- How to handle Imbalanced Classification Problems in machine learning?
How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidh ...
- 几个常用的url生成二维码的接口
找到了几个URL生成的接口,速度上可能会有差别,可试验后选用,我用过第一个,分享: <!doctype html> <html lang="en"> < ...
- do-while-zero 结构在宏定义中的应用
do while 语句在使用宏定义时是一个有用的技巧,说明如下: 假设有这样一个宏定义 #define macro(condition) / if(condition) dosomething() 现 ...
- Maven发布项目丢失Mybatis Mapper包的映射问题
由于一些eclipse版本问题,mybatis的mapper包中的sql文件没有被打进包,需要在pom中加入: <build> <!--配置打包时不过滤非java文件开始 --> ...
- 使用WindowsAPI实现播放PCM音频的方法
这篇文章主要介绍了使用WindowsAPI实现播放PCM音频的方法,很实用的一个功能,需要的朋友可以参考下 本文介绍了使用WindowsAPI实现播放PCM音频的方法,同前面一篇使用WindowsAP ...
- bzoj1002轮状病毒
高精度练习题 根据什么什么基尔霍夫矩阵 反正就是高精度练习 #include<iostream> #include<cstdio> using namespace std; s ...
- 关系运算符 逻辑运算符 if 语句 switch语句
1. BOOL类型 BOOL isRightOrNo = YES; isRightOrNo = 56;//可以打印出来,在C语言中,非0即真 printf("%d\n" , isR ...