BZOJ5324 JXOI2018 守卫
这是我见过的为数不多的良心九怜题之一
题目大意
给定一段$n$个点构成的折线,第$i$个折点的坐标是$(i,h_i)$,你可以在$i$点放置一个视野,定义$i$能看到$j$当且仅当$i$处有视野且$j\leq i$且$(i,h_i)$到$(j,h_j)$的连线段除了两个端点都严格地在折线上方。一段区间$[L,R]$对答案的贡献是能看到至少整个$[L,R]$的需要的视野最小数量,求所有区间答案的异或和。
题解
考虑一段区间$[L,R]$,$R$一定要选,对于每一个$R$端点看不到的点$x$,若$x+1$能被看到,则一定要在$x+1$处或$x$处放置视野才行。
所以区间$DP$,预处理两点之间可否互相看到,枚举右端点,从右向左扫,对于最左侧连续的一段$r$看不到的点,设$[l,k]$是这段区间,则$F_{l,r}=\min\{F_{l,k},F_{l,k+1}\}+F_{k+1,r}$,否则$F_{l,r}=F_{l+1,r}$。
#include<bits/stdc++.h>
#define M 5020
#define LL long long
using namespace std;
int n,m,p[M],F[M][M],ans; bool can[M][M];
int read(){
int nm=0,fh=1; char cw=getchar();
for(;!isdigit(cw);cw=getchar()) if(cw=='-') fh=-fh;
for(;isdigit(cw);cw=getchar()) nm=nm*10+(cw-'0');
return nm*fh;
}
int main(){
n=read(); for(int i=1;i<=n;i++) p[i]=read(),F[i][i]=F[i-1][i]=1;
for(int i=1;i<=n;i++){
for(int ht=-1,j=1,pos=1;i+j<=n;j++){
if((LL)(ht-p[i])*(LL)j>=(LL)(p[i+j]-p[i])*(LL)pos) can[i][i+j]=false;
else can[i][i+j]=true,pos=j,ht=p[i+j];
}
} ans=1;
for(int r=3;r<=n;++r){
for(int last=0,l=r-2;l;--l){
if(can[l][r]) last=0,F[l][r]=F[l+1][r];
else if(last) F[l][r]=F[last+1][r]+min(F[l][last],F[l][last+1]);
else F[l][r]=F[l+1][r]+1,last=l; ans^=F[l][r];
}
} printf("%d\n",ans); return 0;
}
BZOJ5324 JXOI2018 守卫的更多相关文章
- BZOJ5324 JXOI2018守卫(区间dp)
对于每个区间[l,r],显然右端点r是必须放置守卫的.考虑其不能监视到的点,构成一段段区间.一个非常显然但我就是想不到的性质是,对于这样的某个区间[x,y],在(y+1,r)内的点都是不能监视到这个区 ...
- 【BZOJ5324】[JXOI2018]守卫(动态规划)
[BZOJ5324][JXOI2018]守卫(动态规划) 题面 BZOJ 洛谷 题解 既然只能看到横坐标在左侧的点,那么对于任意一个区间\([l,r]\)而言,\(r\)必须被选. 假设\(r\)看不 ...
- [JXOI2018]守卫
嘟嘟嘟 正如某题解所说,这题很有误导性:我就一直在想凸包. 随便一个数据,就能把凸包hack掉: 这样我们的点G就gg了. 所以正解是什么呢?dp. 题解看这位老哥的吧,我感觉挺好懂的:题解 P456 ...
- BZOJ5324 & 洛谷4563 & LOJ2545:[JXOI2018]守卫——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5324 https://www.luogu.org/problemnew/show/P4563 ht ...
- 洛谷P4563 [JXOI2018]守卫(dp)
题意 题目链接 Sol 非常有意思的题目. 我们设\(f[l][r]\)表示区间\([l,r]\)的答案. 显然\(r\)位置一定有一个保镖 同时不难观察到一个性质:拿\([1, n]\)来说,设其观 ...
- JXOI2018守卫 区间DP
链接 https://loj.ac/problem/2545 思路 f[i][j]表示i到j区间的最小监视人数 可以预处理出来g[i][j],表示i能否监视到j (其实预处理的关系不大,完全可以直接判 ...
- [洛谷P4563][JXOI2018]守卫
题目大意:有一段$n(n\leqslant5\times10^3)$个点的折线,特殊点可以覆盖它以及它左边的它可以“看见”的点(“看见”指连线没有其他东西阻挡).定义$f_{l,r}$为区间$[l,r ...
- yyb省选前的一些计划
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...
- 【JXOI2018】守卫
[JXOI2018]守卫 参考题解:https://blog.csdn.net/dofypxy/article/details/80196942 大致思路就是:区间DP.对于\([l,r]\)的答案, ...
随机推荐
- Android插件化(使用Small框架)
github: https://github.com/cayden/MySmall Android插件化(使用Small框架) 框架源代码 1. Create Project File->New ...
- spring 事务传播行为类型
事务传播行为种类 Spring在TransactionDefinition接口中规定了7种类型的事务传播行为, 它们规定了事务方法和事务方法发生嵌套调用时事务如何进行传播: 事务传播行为类型 说明 P ...
- Python 集合、字典、运算符
先区分一下序列类型和散列类型: 序列类型:list.string.tuple,他们中的元素是有序的. 散列类型:set.dict,他们中的元素无序的. 序列类型有序,可以用索引.而散列类型中的元素是无 ...
- EasyNVR流媒体直播之:零基础实现摄像头的全平台直播 (二)公网直播的实现
接上回(https://blog.csdn.net/xiejiashu/article/details/81276870),我们实现内网直播,可以实现直播的web观看,该篇博文我们将实现公网的直播. ...
- EasyDSS流媒体解决方案实现的RTMP/HLS视频直播、直播鉴权(如何完美将EasyDSS过渡到新版)
上一篇博文介绍了EasyDSS点播功能,然后作为RTMP流媒体服务器,接受RTMP推流.进行实时的直播流分发又是自身一大核心功能. 需求背景: 写本篇博文的一个目的是向大家介绍一下EasyDSS新版的 ...
- [note]一类位运算求最值问题
[note]一类位运算求最值问题 给定一些数,让你从中选出两个数a,b,每次询问下列中的一个 1.a and b的最大值 2.a xor b的最大值 3.a or b的最大值 神仙们都是FWT,小蒟蒻 ...
- SAP号码段
[转http://blog.csdn.net/wengyupeng/article/details/8513527] 1.通用Tcode:SNRO 常用维护特定Number range Tcode: ...
- Jquery定义对象( 闭包)
转自:http://www.cnblogs.com/springsnow/archive/2010/06/03/1750832.html 例一:添加对象的静态属性 声明一个对象$.problemWo, ...
- python基础13 ---函数模块3(正则表达式)
正则表达式 一.正则表达式的本质 1.正则表达式的本质(或 RE)是一种小型的.高度专业化的编程语言,(在Python中)它内嵌在Python中,并通过 re 模块实现.正则表达式模式被编译成一系列的 ...
- Effective java -- 9 并发/序列化
关于同步的问题,想弄明白java,同步不会是不行的.这不书弄完后还会从<java并发编程实战>和<java并发编程的艺术>选一本或者都看. 第六十六条:同步访问共享的可变数据说 ...