打牌技术不精,没有把$A$放在顺子里面搜,WA了好长时间。

盗用大佬的一张图:

当时自己搜的时候没有把四张牌拆成三带一等情况。

然后还有一点就是四张三张都出完之后直接数一数剩下的一张两张牌还要多少次出完就好了,没有必要浪费栈空间和递归深度去搜这些东西。(我就是这样T了好多次QωQ)。

要注意暴力算的前提就是一定要把之前的三张四张打完。

玄学复杂度。

代码很丑很长。

Code:

#include <cstdio>
#include <cstring>
using namespace std; const int N = ;
const int inf = << ; int testCase, n, cnt[N], ans; inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline void chkMin(int &x, int y) {
if(y < x) x = y;
} void dfs(int rest, int stp) {
if(stp >= ans) return;
if(rest == ) {
chkMin(ans, stp);
return;
} /* for(int j, i = 3; i <= 14; i++) {
if(cnt[i] < 1) continue;
for(j = i; j <= 14; j++)
if(cnt[j] < 1) break;
j--;
if(j - i + 1 < 5) {
i = j;
continue;
}
for(int k = i; k <= j; k++) --cnt[k];
dfs(rest - (j - i + 1), stp + 1);
for(int k = i; k <= j; k++) ++cnt[k];
i = j;
} for(int j, i = 3; i <= 14; i++) {
if(cnt[i] < 2) continue;
for(j = i; j <= 14; j++)
if(cnt[j] < 2) break;
j--;
if(j - i + 1 < 3) {
i = j;
continue;
}
for(int k = i; k <= j; k++) cnt[k] -= 2;
dfs(rest - (j - i + 1) * 2, stp + 1);
for(int k = i; k <= j; k++) cnt[k] += 2;
i = j;
} for(int j, i = 3; i <= 14; i++) {
if(cnt[i] < 3) continue;
for(j = i; j <= 14; j++)
if(cnt[j] < 3) break;
j--;
if(j - i + 1 < 2) {
i = j;
continue;
}
for(int k = i; k <= j; k++) cnt[k] -= 3;
dfs(rest - (j - i + 1) * 3, stp + 1);
for(int k = i; k <= j; k++) cnt[k] += 3;
i = j;
} */ /* for(int j, k, i = 2; i <= 14; i++) {
if(cnt[i] < 4) continue;
for(j = 2; j <= 15; j++) {
if(j == i) continue;
if(cnt[j] > 1) {
for(k = 2; k <= 15; k++) {
if(k == i) continue;
if(cnt[k] > 1) {
cnt[i] -= 4, cnt[j] -= 2, cnt[k] -= 2;
dfs(rest - 8, stp + 1);
cnt[i] += 4, cnt[j] += 2, cnt[k] += 2;
}
}
}
}
} for(int j, k, i = 2; i <= 14; i++) {
if(cnt[i] < 4) continue;
for(j = 2; j <= 15; j++) {
if(j == i) continue;
if(cnt[j] > 0) {
for(k = 2; k <= 15; k++) {
if(k == i) continue;
if(cnt[k] > 0) {
cnt[i] -= 4, --cnt[j], --cnt[k];
dfs(rest - 6, stp + 1);
cnt[i] += 4, ++cnt[j], ++cnt[k];
}
}
}
}
} for(int i = 2; i <= 14; i++) {
if(cnt[i] < 4) continue;
cnt[i] -= 4;
dfs(rest - 4, stp + 1);
cnt[i] += 4;
} for(int j, i = 2; i <= 14; i++) {
if(cnt[i] < 3) continue;
for(j = 2; j <= 15; j++) {
if(j == i) continue;
if(cnt[j] > 1) {
cnt[i] -= 3, cnt[j] -= 2;
dfs(rest - 5, stp + 1);
cnt[i] += 3, cnt[j] += 2;
}
}
} for(int j, i = 2; i <= 14; i++) {
if(cnt[i] < 3) continue;
for(j = 2; j <= 15; j++) {
if(j == i) continue;
if(cnt[j] > 0) {
cnt[i] -= 3, --cnt[j];
dfs(rest - 4, stp + 1);
cnt[i] += 3, ++cnt[j];
}
}
} for(int i = 2; i <= 14; i++) {
if(cnt[i] < 3) continue;
cnt[i] -= 3;
dfs(rest - 3, stp + 1);
cnt[i] += 3;
} */ int len = ;
for(int i = ; i <= ; i++) {
if(cnt[i] == ) len = ;
else {
++len;
if(len >= ) {
for(int j = i; j >= i - len + ; j--) cnt[j]--;
dfs(rest - len, stp + );
for(int j = i; j >= i - len + ; j--) cnt[j]++;
}
}
} len = ;
for(int i = ; i <= ; i++) {
if(cnt[i] <= ) len = ;
else {
++len;
if(len >= ) {
for(int j = i; j >= i - len + ; j--) cnt[j] -= ;
dfs(rest - len * , stp + );
for(int j = i; j >= i - len + ; j--) cnt[j] += ;
}
}
} len = ;
for(int i = ; i <= ; i++) {
if(cnt[i] <= ) len = ;
else {
len++;
if(len >= ) {
for(int j = i; j >= i - len + ; j--) cnt[j] -= ;
dfs(rest - len * , stp + );
for(int j = i; j >= i - len + ; j--) cnt[j] += ;
}
}
} for(int i = ; i <= ; i++) {
if(cnt[i] <= ) {
if(cnt[i] <= ) continue;
cnt[i] -= ;
for(int j = ; j <= ; j++) {
if(j == i || cnt[j] == ) continue;
cnt[j]--;
dfs(rest - , stp + );
cnt[j]++;
}
for(int j = ; j <= ; j++) {
if(j == i || cnt[j] <= ) continue;
cnt[j] -= ;
dfs(rest - , stp + );
cnt[j] += ;
}
cnt[i] += ;
} else {
cnt[i] -= ;
for(int j = ; j <= ; j++) {
if(j == i || cnt[j] == ) continue;
cnt[j]--;
dfs(rest - , stp + );
cnt[j]++;
}
for(int j = ; j <= ; j++) {
if(j == i || cnt[j] <= ) continue;
cnt[j] -= ;
dfs(rest - , stp + );
cnt[j] += ;
}
cnt[i] += ; cnt[i] -= ;
for(int j = ; j <= ; j++) {
if(j == i || cnt[j] == ) continue;
cnt[j]--;
for(int k = ; k <= ; k++) {
if(k == j || cnt[k] == ) continue;
cnt[k]--;
dfs(rest - , stp + );
cnt[k]++;
}
cnt[j]++;
} for(int j = ; j <= ; j++) {
if(j == i || cnt[j] <= ) continue;
cnt[j] -= ;
for(int k = ; k <= ; k++) {
if(k == j || cnt[k] <= ) continue;
cnt[k] -= ;
dfs(rest - , stp + );
cnt[k] += ;
}
cnt[j] += ;
}
cnt[i] += ;
}
} int now = ;
for(int i = ; i <= ; i++)
if(cnt[i]) ++now; chkMin(ans, stp + now);
} int main() {
// freopen("Sample.txt", "r", stdin);
// freopen("testdata.in", "r", stdin);
// freopen("my.txt", "w", stdout); read(testCase), read(n);
for(; testCase--; ) {
memset(cnt, , sizeof(cnt)); for(int x, y, i = ; i <= n; i++) {
read(x), read(y);
if(x == ) cnt[]++;
else {
if(x == ) cnt[]++;
else cnt[x]++;
}
} ans = inf;
dfs(n, ); printf("%d\n", ans);
}
return ;
}

Luogu 2668 [NOIP2015]斗地主的更多相关文章

  1. Luogu 2668 NOIP 2015 斗地主(搜索,动态规划)

    Luogu 2668 NOIP 2015 斗地主(搜索,动态规划) Description 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来 ...

  2. NOIP2015斗地主[DFS 贪心]

    题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关系根据牌的数码表示如下:3<4< ...

  3. BZOJ 4325: NOIP2015 斗地主

    4325: NOIP2015 斗地主 Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 684  Solved: 456[Submit][Status] ...

  4. NOIP2015 斗地主(搜索+剪枝)

    4325: NOIP2015 斗地主 Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 270  Solved: 192[Submit][Status] ...

  5. [补档][NOIP2015] 斗地主

    [NOIP2015] 斗地主 题目 传送门:http://cogs.pro/cogs/problem/problem.php?pid=2106 INPUT 第一行包含用空格隔开的2个正整数Tn,表示手 ...

  6. LOJ2422 NOIP2015 斗地主 【搜索+贪心】*

    LOJ2422 NOIP2015 斗地主 LINK 题目大意很简单,就是问你斗地主的一分手牌最少多少次出完 然后我们发现对于一种手牌状态,不考虑顺子的情况是可以贪心做掉的 然后我们直接枚举一下顺子出牌 ...

  7. 【BZOJ4325】NOIP2015 斗地主 搜索+剪枝

    [BZOJ4325]NOIP2015 斗地主 Description 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗 ...

  8. 2106. [NOIP2015] 斗地主

        2106. [NOIP2015] 斗地主 ★★★☆   输入文件:landlords.in   输出文件:landlords.out   简单对比 时间限制:2 s   内存限制:1025 M ...

  9. NOIP2015斗地主题解 7.30考试

    问题 B: NOIP2015 斗地主 时间限制: 3 Sec  内存限制: 1024 MB 题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共 ...

随机推荐

  1. JavaScript日期选择控件Kalendae

    在线演示 本地下载

  2. 一个例子看懂所有nodejs的官方网络demo

    今天看群里有人用AI技术写了个五子棋,正好用的socket.io,本身我自己很久没看nodejs了,再加上Tcp/IP的知识一直很弱,我就去官网看了下net.socket 发现之前以为懂的一个官方例子 ...

  3. Luogu-4166 [SCOI2007]最大土地面积

    求平面内四边形的最大面积 显然四个端点都应该在凸包上,就先求凸包,然后\(n^2\)枚举四边形对角线,对于一个点\(i\),顺序枚举\(j\),同时用旋转卡壳的方法去找离对角线最远的两个点.总时间复杂 ...

  4. LINQ 学习路程 -- 查询操作 ThenBy & ThenByDescending

    IList<Student> studentList = new List<Student>() { , StudentName = } , , StudentName = } ...

  5. 算法(Algorithms)第4版 练习 2.1.27

    package com.qiusongde; import edu.princeton.cs.algs4.StdOut; public class Exercise2127 { public stat ...

  6. Jackson的用法实例分析

    这篇文章主要介绍了Jackson的用法实例分析,用于处理Java的json格式数据非常实用,需要的朋友可以参考下 通俗的来说,Jackson是一个 Java 用来处理 JSON 格式数据的类库,其性能 ...

  7. 2018.5.8 Project review

    1 .product introduced A. Function requirement (customer) The product function is control the 1KW and ...

  8. org.apache.catalina.core.StandardWrapperValve invoke报错

    tomcat报错如下: HTTP Status 404 - Servlet xxx is not available type Status report message Servlet xxx is ...

  9. codeforces 633D D. Fibonacci-ish(dfs+暴力+map)

    D. Fibonacci-ish time limit per test 3 seconds memory limit per test 512 megabytes input standard in ...

  10. SQL语言方方面面

    1 数据库和SQL 1.1 数据库 DB, DBMS DBMS的种类: 层次性数据库, 关系型数据库, 非关系型数据库 RDBMS, 关系数据库管理系统 1.2 数据库的结构 RDBMS常见的系统结构 ...