快速莫比乌斯变换(FMT)

原文出处:虞大的博客。此仅作蒟蒻本人复习用~

给定两个长度为n的序列 \(a_0, a_1, \cdots, a_{n-1}\)和\(b_0, b_1, \cdots, b_{n-1}\),你需要求出一个序列\(c_0, c_1, \cdots, c_{n-1}\),其中\(c_k\)满足:\(c_k = \sum\limits_{i \mid j = k} a_i b_j\)。其中|表示按位或。\(n \leq 10^6\)表示序列长度。

显然发现\(i∣j=k\)这个条件不怎么好处理,如果我们作一个集合的 "前缀和" ,即令\(P_i = \sum\limits_{j \subseteq i} p_j\)(\(i\&j=j\)),那么有:\(C_k = \sum_{k_0 \subseteq k} c_i = \sum_{k_0 \subseteq k} \sum_{i \cup j = k_0} a_i b_j = \sum_{i \cup j \subseteq k} a_i b_j = \left( \sum_{i \subseteq k} a_i \right) \left( \sum_{j \subseteq k} b_j \right) = A_k \cdot B_k\)

所以说我们就把集合并卷积转化成了两个“前缀和”集合的\(O(n)\)运算,和FFT差不多。现在的问题就是怎么快速算出这些“前缀和”集合。

我们可以画一张图,图中每一行代表一个\(P_i\)。这一行有哪些格子涂蓝,就代表它是哪些\(p_i\)的和:

如果用动态规划来理解的话,令\(f[i][j]\)表示j的开头\(2^i\)个数中为权值为1的数的和, 那么转移显然就是\(f[i+1][j+2^i]+=f[i][j]\)(j的\(2^i\)位是0)。其中j这一维是可以压掉的。

如果改变一下你脑海中的求和顺序,那么循环内的一次加法,就相当于一个集合的前面2^i个元素的值被加上了。

如果要把\(f\)还原该怎么办呢?只要把+=改成-=就行了~(不会证,但是真的很好记)

#include <cctype>
#include <cstdio>
using namespace std; typedef long long LL;
const LL maxn=2e6+5;
LL n, l, bits, a[maxn], b[maxn], c[maxn]; void FMT(LL *f, LL flag){
for (LL i=0; i<bits; ++i)
for (LL j=0; j<l; ++j)
if ((j>>i&1)==0) f[j|1<<i]+=(~flag?f[j]:-f[j]);
} inline void getint(LL &x){
char ch; x=0;
for (; ch=getchar(), !isdigit(ch););
for (x=ch-48; ch=getchar(), isdigit(ch);)
x=(x<<3)+(x<<1)+ch-48;
} int main(){
getint(n); l=1;
while (l<n) l<<=1, ++bits;
for (LL i=0; i<n; ++i) getint(a[i]); FMT(a, 1);
for (LL i=0; i<n; ++i) getint(b[i]); FMT(b, 1);
for (LL i=0; i<l; ++i) c[i]=a[i]*b[i]; FMT(c, -1);
//坑点1:乘法可能爆LL 坑点二:i要到l
for (LL i=0; i<n; ++i) printf("%lld ", c[i]);
return 0;
}

快速莫比乌斯变换(FMT)的更多相关文章

  1. 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))

    也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...

  2. 快速沃尔什变换(FWT) 与 快速莫比乌斯变换 与 快速沃尔什变换公式推导

    后面的图片将会告诉: 如何推出FWT的公式tf 如何推出FWT的逆公式utf 用的是设系数,求系数的方法! ============================================== ...

  3. 快速沃尔什变换&快速莫比乌斯变换小记

    u1s1 距离省选只剩 5 days 了,现在学新算法真的合适吗(( 位运算卷积 众所周知,对于最普通的卷积 \(c_i=\sum\limits_{j+k=i}a_jb_k\),\(a_jb_k\) ...

  4. P4717-[模板]快速莫比乌斯/沃尔什变换(FMT/FWT)

    正题 题目链接:https://www.luogu.com.cn/problem/P4717 题目大意 给出两个长度为\(2^n\)的数列\(A,B\)求 \[C_{n}=\sum_{i\ or\ j ...

  5. BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演

    http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/5 ...

  6. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  7. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  8. 快速傅里叶变换 & 快速数论变换

    快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...

  9. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

随机推荐

  1. JDK 8 - java.util.HashSet 实现机制分析

    JDK 8 Class HashSet<E> Doc: public class HashSet<E> extends AbstractSet<E> impleme ...

  2. QQ控件时光轴特效总结

    1.插入HTML数据 插入html代码,一般的做法是通过document.getElementById("").innerHTML来实现. 然而在该控件中,它通过JS replac ...

  3. 开发环境入门 linux基础 (部分)网络 SSH 更名 DNS解析 元字符

    nginx---> web ifconfig 查看网络配置信息 id add show 查看当前网卡信息(最小安装下) mtu 是指网卡传输的最大单元 单位:字节 网卡配置 临时配置 ifcon ...

  4. 2015.11.3 RichBox改变若干文本颜色

    for(int i=1;i<rtb.Lines.Length;i++) { if(rtb.Lines[i] == rtb.Lines[i - 1]) { int bg = rtb.GetFirs ...

  5. python获得当前工作目录和修改

    import os  curDir = os.getcwd() 最近使用Python 写了很多脚本,想导入脚本,发现不知道如何查看python 的默认工作目录,并修改默认工作目录. 方法/步骤   查 ...

  6. css之content

    content 属性与 :before 及 :after 伪元素配合使用,来插入生成内容.该属性用于定义元素之前或之后放置的生成内容.默认地,这往往是行内内容,不过该内容创建的框类型可以用属性 dis ...

  7. 【转】Sublime Text2中的快捷键一览表(Sublime 键盘快捷键大全 )

    Sublime Text 提供了无比强大的快捷键阵容,如果能够在Coding的时候灵活的使用快捷键,将能够使得你的效率倍增,相信在不久的将来,Sublime Text将是你跨平台使用的最佳Coding ...

  8. Android排错: has leaked window com.android.internal.policy.impl.PhoneWindow$ that was originally added here

    异常场景: 经常在应用中需要处理一些耗时的工作,诸如读取大文件.访问网络资源等.为了避免因程序假死而带来的糟糕用户体验,通常我们可以通过线程+Handler或者Android提供的AsyncTask来 ...

  9. android手势(gesture)

    需要实现两个接口,OnTouchListener ,OnGestureListener 在接口方法中实现各种事件 详见:http://www.cnblogs.com/JczmDeveloper/p/3 ...

  10. cocos2d-js 浏览器与JSB内存管理机制的不同

    写这边文章的主要目的是为了理解使用cocos3d-js开发app时,浏览器调试与真机情况不一致的原因 一.浏览器中内存管理机制 HTML5版本运行时,整个游戏只存在JS脚本与一些必要的资源文件,这时候 ...