题目大意

给定一个序列A1 A2 .. AN 和M个查询

  • 每个查询含有两个数 LiRi.
  • 查询定义了一个函数 Fi(x) 在区间 [Li, Ri]Z.
  • Fi(Li) = ALi
  • Fi(Li + 1) = A(Li + 1)
  • 对于所有的x >= Li + 2, Fi(x) = Fi(x - 1) + Fi(x - 2) × Ax

求Fi(Ri)

题解

根据递推式可以构造一个矩阵:

继续展开,最终矩阵就是这个样子的了

因此每次查询就是求矩阵的连乘

普通的做法就是每查询一次线性计算一次上式,时间复杂度O(n),所以总的时间复杂度为O(m*n),显然要跪。。。线段树就很好的解决了这个问题,每个结点保存的都是一个矩阵,这样查询的时候就只需要O(logn)的时间了!

代码:

#include <iostream>
#include <string>
#include <cstring>
#include <stdio.h>
using namespace std;
#define maxn 100005
#define MOD 1000000007
#define lson l,m,s<<1
#define rson m+1,r,s<<1|1
typedef long long LL;
struct Matrix
{
LL mat[2][2];
int r;
void init(int n)
{
memset(mat,0,sizeof(mat));
r=n;
}
};
Matrix matrix_mul(Matrix a,Matrix b)
{
Matrix ans;
ans.init(a.r);
for(int i=0; i<a.r; i++)
for(int j=0; j<a.r; j++)
for(int k=0; k<a.r; k++)
if(a.mat[i][k]&&b.mat[k][j])
ans.mat[i][j]=(ans.mat[i][j]+a.mat[i][k]*b.mat[k][j])%MOD;
return ans;
}
LL a[maxn];
Matrix sum[maxn<<2];
void Pushup(int s)
{
sum[s]=matrix_mul(sum[s<<1|1],sum[s<<1]);
}
void build(int l,int r,int s)
{
sum[s].init(2);
if(l==r)
{
sum[s].mat[0][0]=sum[s].mat[1][0]=1;
sum[s].mat[0][1]=a[r];
return;
}
int m=(l+r)>>1;
build(lson);
build(rson);
Pushup(s);
}
Matrix query(int ql,int qr,int l,int r,int s)
{
if(ql<=l&&r<=qr) return sum[s];
int m=(l+r)>>1;
Matrix ret;
ret.init(2);
ret.mat[0][0]=ret.mat[1][1]=1;
if(qr>m) ret=matrix_mul(ret,query(ql,qr,rson));
if(ql<=m) ret=matrix_mul(ret,query(ql,qr,lson));
return ret;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++) scanf("%lld",&a[i]);
build(1,n,1);
while(m--)
{
int l,r;
scanf("%d%d",&l,&r);
if(l==r||(l+1)==r)
{
printf("%lld\n",a[r]);
continue;
}
Matrix ans=query(l+2,r,1,n,1);
//printf("%I64d %I64d\n",ans.mat[0][0],ans.mat[0][1]);
// printf("%I64d %I64d\n",ans.mat[1][0],ans.mat[1][1]);
printf("%lld\n",(ans.mat[0][0]*a[l+1]+ans.mat[0][1]*a[l])%MOD);
}
}
return 0;
}

ZOJ3772 - Calculate the Function(线段树+矩阵)的更多相关文章

  1. ZOJ 3772 Calculate the Function 线段树+矩阵

    Calculate the Function Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %ll ...

  2. Z0J 3772 Calculate the Function 线段树+矩阵

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5235 这种题目居然没想到,一开始往矩阵快速幂想去了,因为之前跪了太多矩阵快速幂 ...

  3. Wannafly Winter Camp 2019.Day 8 div1 E.Souls-like Game(线段树 矩阵快速幂)

    题目链接 \(998244353\)写成\(99824435\)然后调这个线段树模板1.5h= = 以后要注意常量啊啊啊 \(Description\) 每个位置有一个\(3\times3\)的矩阵, ...

  4. 线段树 + 矩阵 --- ZOJ 3772 Calculate the Function

    Calculate the Function Problem's Link:   http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCod ...

  5. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

  6. CF719E(线段树+矩阵快速幂)

    题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...

  7. 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法

    C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...

  8. LOJ2980 THUSC2017大魔法师(线段树+矩阵乘法)

    线段树每个节点维护(A,B,C,len)向量,操作即是将其乘上一个矩阵. #include<iostream> #include<cstdio> #include<cma ...

  9. CF718C Sasha and Array 线段树+矩阵加速

    正解:线段树 解题报告: 传送门! 首先这种斐波拉契,又到了1e9的范围,又是求和什么的,自然而然要想到矩阵加速昂 然后这里主要是考虑修改操作,ai+=x如果放到矩阵加速中是什么意思呢QAQ? 那不就 ...

随机推荐

  1. 示例:Servlet显示当前系统时间(时间格式化)

    package com.mhb; import java.io.IOException; import java.io.PrintWriter; import java.text.SimpleDate ...

  2. 在java程序中访问windows有用户名和密码保护的共享目录

    在java程序中访问windows有用户名和密码保护的共享目录 Posted on 2015-11-20 14:03 云自无心水自闲 阅读(3744) 评论(0)  编辑  收藏 --> Jav ...

  3. struts2中利用POI导出Excel文档并下载

    1.项目组负责人让我实现这个接口,因为以前做过类似的,中间并没有遇到什么太困难的事情.其他不说,先上代码: package com.tydic.eshop.action.feedback; impor ...

  4. 如何使用UIAutomation进行iOS 自动化测试(Part I)

    转自:http://www.cnblogs.com/vowei/archive/2012/08/10/2631949.html 写在前面 研究iOS的自动化测试也有些日子了,刚开始的时候,一直苦于找不 ...

  5. ha_innobase::general_fetch

    /***********************************************************************//** Reads the next or previ ...

  6. UVa 11168 (凸包+点到直线距离) Airport

    题意: 平面上有n个点,求一条直线使得所有点都在直线的同一侧.并求这些点到直线的距离之和的最小值. 分析: 只要直线不穿过凸包,就满足第一个条件.要使距离和最小,那直线一定在凸包的边上.所以求出凸包以 ...

  7. Selenium Tutorial (1) - Starting with Selenium WebDriver

    Starting with Selenium WebDriver Selenium WebDriver - Introduction & Features How Selenium WebDr ...

  8. codevs 1137 计算系数

    什么时候NOIP也要出二项式定理了? 二项式定理+逆元. #include<iostream> #include<cstdio> #include<cstring> ...

  9. Androidstudio下Generate signed apk提示Error: Expected resource of type id [ResourceType]解决办法

    只需要在报错位置所在的类上面添加: @SuppressWarnings("ResourceType") 即可实现Generate signed apk.

  10. 使用AngularJS 进行Hybrid App 开发已经有一年多时间了,这里做一个总结

    一.AngularJS 初始化加载流程 1.浏览器载入HTML,然后把它解析成DOM.2.浏览器载入angular.js脚本.3.AngularJS等到DOMContentLoaded事件触发.4.A ...