题意:给出一个5个顶点的多面体以及多面体内一点P。求让 多面体不同的方式(即以不同的面)放在地面上,设这个着地的面为A,多面体重心在A上的投影为B,在保证B在A内部且距离A的各个边界不小于0.2的前提 下(否则这种放置方式就是不合法的),求P距离地面的最大最小距离为多少。

思路:

(1)判断两个点是不是在面的同一侧;否则这个面就不能作为着地的面;

(2)计算重心;

(3)计算点在面的投影;

(4)计算点是否在面内;

(5)计算点到线的距离;

(6)计算点到面的距离。

特殊情况:四点共面当底面.

 #include<cstdio>
#include<cmath>
using namespace std; const double eps = 1e-;
int dcmp(double x)
{
if(fabs(x) < eps) return ;
else return x < ? - : ;
} struct Point3
{
double x, y, z;
Point3(double x=, double y=, double z=):x(x),y(y),z(z) { }
}; typedef Point3 Vector3; Vector3 operator + (const Vector3& A, const Vector3& B)
{
return Vector3(A.x+B.x, A.y+B.y, A.z+B.z);
} Vector3 operator - (const Point3& A, const Point3& B)
{
return Vector3(A.x-B.x, A.y-B.y, A.z-B.z);
} Vector3 operator * (const Vector3& A, double p)
{
return Vector3(A.x*p, A.y*p, A.z*p);
} Vector3 operator / (const Vector3& A, double p)
{
return Vector3(A.x/p, A.y/p, A.z/p);
} double Dot(const Vector3& A, const Vector3& B)
{
return A.x*B.x + A.y*B.y + A.z*B.z;
}
double Length(const Vector3& A)
{
return sqrt(Dot(A, A));
}
double Angle(const Vector3& A, const Vector3& B)
{
return acos(Dot(A, B) / Length(A) / Length(B));
}
Vector3 Cross(const Vector3& A, const Vector3& B)
{
return Vector3(A.y*B.z - A.z*B.y, A.z*B.x - A.x*B.z, A.x*B.y - A.y*B.x);
}
double Area2(const Point3& A, const Point3& B, const Point3& C)
{
return Length(Cross(B-A, C-A));
}
double Volume6(const Point3& A, const Point3& B, const Point3& C, const Point3& D)
{
return Dot(D-A, Cross(B-A, C-A));
} bool read_point3(Point3& p)
{
if(scanf("%lf%lf%lf", &p.x, &p.y, &p.z) != ) return false;
return true;
} // 点p到平面p0-n的距离。n必须为单位向量
double DistanceToPlane(const Point3& p, const Point3& p0, const Vector3& n)
{
return fabs(Dot(p-p0, n)); // 如果不取绝对值,得到的是有向距离
} // 点p在平面p0-n上的投影。n必须为单位向量
Point3 GetPlaneProjection(const Point3& p, const Point3& p0, const Vector3& n)
{
return p-n*Dot(p-p0, n);
} // 点P到直线AB的距离
double DistanceToLine(const Point3& P, const Point3& A, const Point3& B)
{
Vector3 v1 = B - A, v2 = P - A;
return Length(Cross(v1, v2)) / Length(v1);
} // p1和p2是否在线段a-b的同侧
bool SameSide(const Point3& p1, const Point3& p2, const Point3& a, const Point3& b)
{
return dcmp(Dot(Cross(b-a, p1-a), Cross(b-a, p2-a))) >= ;
} // 点在三角形P0, P1, P2中
bool PointInTri(const Point3& P, const Point3& P0, const Point3& P1, const Point3& P2)
{
return SameSide(P, P0, P1, P2) && SameSide(P, P1, P0, P2) && SameSide(P, P2, P0, P1);
} // 四面体的重心
Point3 Centroid(const Point3& A, const Point3& B, const Point3& C, const Point3& D)
{
return (A + B + C + D)/4.0;
} #include<algorithm>
//using namespace std; // 判断P是否在三角形A, B, C中,并且到三条边的距离都至少为mindist。保证P, A, B, C共面
bool InsideWithMinDistance(const Point3& P, const Point3& A, const Point3& B, const Point3& C, double mindist)
{
if(!PointInTri(P, A, B, C)) return false;
if(DistanceToLine(P, A, B) < mindist) return false;
if(DistanceToLine(P, B, C) < mindist) return false;
if(DistanceToLine(P, C, A) < mindist) return false;
return true;
} // 判断P是否在凸四边形ABCD(顺时针或逆时针)中,并且到四条边的距离都至少为mindist。保证P, A, B, C, D共面
bool InsideWithMinDistance(const Point3& P, const Point3& A, const Point3& B, const Point3& C, const Point3& D, double mindist)
{
if(!PointInTri(P, A, B, C)) return false;
if(!PointInTri(P, C, D, A)) return false;
if(DistanceToLine(P, A, B) < mindist) return false;
if(DistanceToLine(P, B, C) < mindist) return false;
if(DistanceToLine(P, C, D) < mindist) return false;
if(DistanceToLine(P, D, A) < mindist) return false;
return true;
} int main()
{
for(int kase = ; ; kase++)
{
Point3 P[], F;
for(int i = ; i < ; i++)
if(!read_point3(P[i])) return ;
read_point3(F); // 求重心坐标
Point3 c1 = Centroid(P[], P[], P[], P[]);
Point3 c2 = Centroid(P[], P[], P[], P[]);
double vol1 = fabs(Volume6(P[], P[], P[], P[])) / 6.0;
double vol2 = fabs(Volume6(P[], P[], P[], P[])) / 6.0;
Point3 centroid = (c1 * vol1 + c2 * vol2) / (vol1 + vol2); // 枚举放置方案
double mindist = 1e9, maxdist = -1e9;
for(int i = ; i < ; i++)
for(int j = i+; j < ; j++)
for(int k = j+; k < ; k++)
{
// 找出另外两个点的下标a和b
int vis[] = {};
vis[i] = vis[j] = vis[k] = ;
int a, b;
for(a = ; a < ; a++) if(!vis[a])
{
b = -i-j-k-a;
break;
} // 判断a和b是否在平面i-j-k的异侧(体积法判断)
int d1 = dcmp(Volume6(P[i], P[j], P[k], P[a]));
int d2 = dcmp(Volume6(P[i], P[j], P[k], P[b]));
if(d1 * d2 < ) continue; // 是,则放置方案不合法 Vector3 n = Cross(P[j]-P[i], P[k]-P[i]); // 法向量
n = n / Length(n); // 单位化 Point3 proj = GetPlaneProjection(centroid, P[i], n); // 重心在平面i-j-k上的投影
bool ok = InsideWithMinDistance(proj, P[i], P[j], P[k], 0.2);
if(!ok)
{
if(d1 == ) // i-j-k-a四点共面。i和j一定为ABC三个顶点之一,k和a是D或者E
{
if(!InsideWithMinDistance(proj, P[i], P[k], P[j], P[a], 0.2)) continue;
}
else if(d2 == ) // i-j-k-b四点共面。i和j一定为ABC三个顶点之一,k和b是D或者E
{
if(!InsideWithMinDistance(proj, P[i], P[k], P[j], P[b], 0.2)) continue;
}
else
continue;
} // 更新答案
double dist = DistanceToPlane(F, P[i], n);
mindist = min(mindist, dist);
maxdist = max(maxdist, dist);
}
printf("Case %d: %.5lf %.5lf\n", kase, mindist, maxdist);
}
return ;
}

uvalive 4795 Paperweight的更多相关文章

  1. UVALive - 4108 SKYLINE[线段树]

    UVALive - 4108 SKYLINE Time Limit: 3000MS     64bit IO Format: %lld & %llu Submit Status uDebug ...

  2. UVALive - 3942 Remember the Word[树状数组]

    UVALive - 3942 Remember the Word A potentiometer, or potmeter for short, is an electronic device wit ...

  3. UVALive - 3942 Remember the Word[Trie DP]

    UVALive - 3942 Remember the Word Neal is very curious about combinatorial problems, and now here com ...

  4. 思维 UVALive 3708 Graveyard

    题目传送门 /* 题意:本来有n个雕塑,等间距的分布在圆周上,现在多了m个雕塑,问一共要移动多少距离: 思维题:认为一个雕塑不动,视为坐标0,其他点向最近的点移动,四舍五入判断,比例最后乘会10000 ...

  5. UVALive 6145 Version Controlled IDE(可持久化treap、rope)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  6. UVALive 6508 Permutation Graphs

    Permutation Graphs Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit ...

  7. UVALive 6500 Boxes

    Boxes Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status Pract ...

  8. UVALive 6948 Jokewithpermutation dfs

    题目链接:UVALive 6948  Jokewithpermutation 题意:给一串数字序列,没有空格,拆成从1到N的连续数列. dfs. 可以计算出N的值,也可以直接检验当前数组是否合法. # ...

  9. 【暑假】[实用数据结构]UVAlive 3135 Argus

    UVAlive 3135 Argus Argus Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %l ...

随机推荐

  1. 贪心算法——将正整数变为1

    题目链接http://toutiao.com/a6320936270101528833/ 为避免链接失效,再粘贴一下题目内容: 给你一个数n,有3种操作: 1.这个数加1 2.这个数减1 3.如果这个 ...

  2. c++实现文本中英文单词和汉字字符的统计

    源代码下载:http://download.csdn.net/detail/nuptboyzhb/4987141 1.统计文本中汉字的频数,为后续的文本分类做基础.对于汉字的统计,需要判断读取的是否为 ...

  3. Debugging with GDB 用GDB调试多线程程序

    Debugging with GDB http://www.delorie.com/gnu/docs/gdb/gdb_25.html GDB调试多线程程序总结 一直对GDB多线程调试接触不多,最近因为 ...

  4. 【leetcode】Word Break II (hard)★

    Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each ...

  5. ssh远程执行命令并自动退出(已测试通过)

    转自:http://blog.csdn.net/fdipzone/article/details/23000201 ssh命令格式如下: usage: ssh [-1246AaCfgKkMNnqsTt ...

  6. ASP.NET 访问 MySql

    1. 首先需要安装mysql, 脚本之家下载地址: http://www.jb51.net/softs/2193.html 或者去mysql.com官网都可以,一路next,安装好后,有个简单配置,提 ...

  7. Photoshop:路径填充边缘虚化问题

    怎么才能不让它虚化呢?  解决方案一: 1.同样画出路径 2.新建图层 3.回到路径面板,右击路径图层,选择“填充路径” 4.把“羽化”设置为0,取消选择“消除锯齿” 换个背景色看看效果:一点虚化都没 ...

  8. 深入php面向对象和模式

    前两章是php历史和概论,略过. 第三章 对象基础 3.1 类和对象 类,是用于生成对象的代码模版. public 公有的,都可调用. protected 保护的, 只有本类和子类可以调用. priv ...

  9. POJ2586——Y2K Accounting Bug

    Y2K Accounting Bug   Description Accounting for Computer Machinists (ACM) has sufferred from the Y2K ...

  10. 如何定制Sink扩展.Net Remoting功能

    http://www.cnblogs.com/rickie/archive/2004/10/21/54891.html