题意:一个无向图联通中,求包含每条边的最小生成树的值(无自环,无重边)

分析:求出这个图的最小生成树,用最小生成树上的边建图

对于每条边,不外乎两种情况

1:该边就是最小生成树上的边,那么答案显然

2:该边不在最小生成树上,那么进行路径查询,假设加入这条边,那么形成一个环,删去这个环上除该边外的最大权值边,形成一棵树

树的权值即为答案。(并不需要真正加入这条边)

注:其实用树链剖分和LCA都可以,选择自己熟悉的写就行,我写的树链剖分

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long LL;
const int maxn=;
int n,m;
LL mst;
struct Edge
{
int w,v,next;
} edge[maxn<<];
struct E
{
int u,v,w,id,mark;
void init(int a,int b,int c,int d)
{
u=a,v=b,w=c,id=d,mark=;
}
} o[maxn];
bool cmp1(E a,E b)
{
return a.id<b.id;
}
bool cmp2(E a,E b)
{
return a.w<b.w;
}
int head[maxn],p;
void addedge(int u,int v,int w)
{
edge[p].v=v;
edge[p].w=w;
edge[p].next=head[u];
head[u]=p++;
}
int fa[maxn],sz[maxn],id[maxn],dep[maxn],top[maxn],son[maxn],clk;
int ww[maxn],re[maxn];
void dfs1(int u,int f,int d)
{
fa[u]=f;
sz[u]=;
son[u]=-;
dep[u]=d;
for(int i=head[u]; ~i; i=edge[i].next)
{
int v=edge[i].v;
if(v==f)continue;
dfs1(v,u,d+);
sz[u]+=sz[v];
if(son[u]==-||sz[v]>sz[son[u]])
son[u]=v,re[u]=edge[i].w;
}
}
void dfs2(int u,int tp,int cc)
{
id[u]=++clk;
top[u]=tp;
ww[id[u]]=cc;
if(son[u]!=-)dfs2(son[u],tp,re[u]);
for(int i=head[u]; ~i; i=edge[i].next)
{
int v=edge[i].v;
if(v==son[u]||v==fa[u])continue;
dfs2(v,v,edge[i].w);
}
}
int maxw[maxn<<];
void pushup(int rt)
{
maxw[rt]=max(maxw[rt*],maxw[rt*+]);
}
void build(int rt,int l,int r)
{
if(l==r)
{
maxw[rt]=ww[l];
return;
}
int m=(l+r)>>;
build(rt*,l,m);
build(rt*+,m+,r);
pushup(rt);
}
int query(int rt,int l,int r,int x,int y)
{
if(x<=l&&r<=y)
return maxw[rt];
int m=(l+r)>>;
int ans=-;
if(x<=m)ans=max(ans,query(rt*,l,m,x,y));
if(y>m)ans=max(ans,query(rt*+,m+,r,x,y));
return ans;
}
int getans(int u,int v)
{
int ans=-;
while(top[u]!=top[v])
{
if(dep[top[u]]<dep[top[v]])swap(u,v);
ans=max(ans,query(,,n,id[top[u]],id[u]));
u=fa[top[u]];
}
if(dep[u]>dep[v])swap(u,v);
ans=max(ans,query(,,n,id[son[u]],id[v]));
return ans;
}
int fat[maxn];
int find(int x)
{
if(x==fat[x])return x;
return fat[x]=find(fat[x]);
}
void init()
{
for(int i=; i<=n; ++i)
fat[i]=i;
mst=p=clk=;
memset(head,-,sizeof(head));
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=; i<m; ++i)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
o[i].init(u,v,w,i);
}
sort(o,o+m,cmp2);
int cnt=;
for(int i=; i<m; ++i)
{
int fx=find(o[i].u);
int fy=find(o[i].v);
if(fy==fx)continue;
addedge(o[i].u,o[i].v,o[i].w);
addedge(o[i].v,o[i].u,o[i].w);
cnt++;
o[i].mark=;
fat[fy]=fx;
mst+=o[i].w;
if(cnt>=n-)break;
}
dfs1(,-,);
dfs2(,,);
build(,,n);
sort(o,o+m,cmp1);
for(int i=; i<m; ++i)
{
if(o[i].mark)printf("%I64d\n",mst);
else
{
int tt=getans(o[i].u,o[i].v);
printf("%I64d\n",mst-tt+o[i].w);
}
}
}
return ;
}

Educational Codeforces Round 3 E (609E) Minimum spanning tree for each edge的更多相关文章

  1. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

  2. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  3. codeforces 609E. Minimum spanning tree for each edge 树链剖分

    题目链接 给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值. 先将最小生成树求出来, 把树边都标记. 然后对标记的边的两个端点, 我们add(u, v), ...

  4. cf 609E.Minimum spanning tree for each edge

    最小生成树,lca(树链剖分(太难搞,不会写)) 问存在这条边的最小生成树,2种情况.1.这条边在原始最小生成树上.2.加上这条半形成一个环(加上),那么就找原来这条边2端点间的最大边就好(减去).( ...

  5. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  6. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  7. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  8. CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  9. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

随机推荐

  1. Mac下安装Redis图解教程

    去redis官网(http://redis.io/download)自行下载安装包解压缩到本地文件夹,比如放在Mac应用程序文件夹(/Applications/),在终端进入redis文件夹. 需要进 ...

  2. 【BZOJ 3190】 3190: [JLOI2013]赛车 (半平面交)

    3190: [JLOI2013]赛车 Description 这里有一辆赛车比赛正在进行,赛场上一共有N辆车,分别称为个g1,g2--gn.赛道是一条无限长的直线.最初,gi位于距离起跑线前进ki的位 ...

  3. Android:Style和Theme

    在Web开发中,Html负责内容,CSS负责表现.同样,在Android开发中,可以使用Theme.Style+UI组件的方式实现内容和形式的分离. Style是针对窗体元素级别的,改变指定控件或者L ...

  4. WM_ACTIVATE

    参数: fActive  = LOWORD(wParam);   // activation flag fMinimized = (BOOL)HIWORD(wParam); // minimized ...

  5. 初识MyBatis

    ORM:对象关系映射,它只是一种规则. 像MyBatis,Hibernate对jdbc进行了封装. 第一章 回顾JDBC开发 1.优点:简单易学,上手快,非常灵活构建SQL(自己写的),效率高.2.缺 ...

  6. 哈希值识别工具hash-identifier

    Hash Identifier可以用来识别各种类型的哈希值.在kali上使用方法很简单 (1)搜索hash-identifier (2)在HASH后面输入要识别的hash内容 (3)识别成功 wind ...

  7. Sqlmap基础(二)

    sqlmap.py -r req1.txt --dbms Oracle --risk

  8. Flex Array内置排序方法的使用

    在Array类中,提供内置的排序方法.排序是在软件开发的过程中,经常遇到的问题.通过这些内置的方法,可以快速轻便的进行排序操作. Array类提供sort方法对Array实例进行排序.sort方法没有 ...

  9. Android 签名(8)签名前用Zipalign简单优化

    1 为什么要优化 Android SDK中包含一个“zipalign”的工具,它能够对打包的应用程序进行优化.在你的应用程序上运行zipalign,使得在运行时Android与应用程序间的交互更加有效 ...

  10. debug类和trace类的区别

    在 .net 类库中有一个 system.diagnostics 命名空间,该命名空间提供了一些与系统进程.事件日志.和性能计数器进行交互的类库.当中包括了两个对开发人员而言十分有用的类——debug ...