A - A Dangerous Maze

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.

If you choose the ith door, it can either take you back to the same position where you begun in xi minutes, or can take you out of the maze after xi minutes. If you come back to the same position, you can't remember anything. So, every time you come to the beginning position, you have no past experience.

Now you want to find the expected time to get out of the maze.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains a blank line and an integer n (1 ≤ n ≤ 100) denoting the number of doors. The next line contains n space separated integers. If the ith integer (xi) is positive, you can assume that the ith door will take you out of maze after xi minutes. If it's negative, then the ith door will take you back to the beginning position after abs(xi) minutes. You can safely assume that 1 ≤ abs(xi) ≤ 10000.

Output

For each case, print the case number and the expected time to get out of the maze. If it's impossible to get out of the maze, print 'inf'. Print the result in p/q format. Where p is the numerator of the result and q is the denominator of the result and they are relatively prime. See the samples for details.

Sample Input

3

1

1

2

-10 -3

3

3 -6 -9

Sample Output

Case 1: 1/1

Case 2: inf

Case 3: 18/1

貌似是第一道关于期望和概率的题,唉、弱

分析:设出去的时间期望等于\(E\),出去分为两种情况:
A. 一次就出去了,则\(P1=n1/n\),\(n1\)表示正数的个数,平均时间\(T1=SUM(ai)/n1\),\(ai\)为正数;
B. 第一次没出去,则\(P2=n2/n\),\(n2\)表示负数的个数,平均时间为回到起点的平均时间+
从起点出去的平均时间,前者\(T2=SUM(ai)/n2\),\(ai\)为负数,后者即为\(E\);
综上:\(E=P1*T1+P2*(T2+E)\)
解得:\(E=(P1*T1+P2*T2)/(1-P2)\)

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
using namespace std;
#define N 110 int main()
{
int T,iCase=;
int n,n1,n2;
int sum1,sum2;
scanf("%d",&T);
while(T--)
{
n1=n2=;
sum1=sum2=;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
if(x>)
{
n1++;
sum1+=x;
}
else
{
n2++;
sum2-=x;
}
}
int k1=sum1+sum2;
int k2=n-n2;
int k=__gcd(k1,k2);
printf("Case %d: ",iCase++);
if(k2==)
printf("inf\n");
else
printf("%d/%d\n",k1/k,k2/k);
}
return ;
}

[LOJ 1027] Dangerous Maze的更多相关文章

  1. LightOJ - 1027 Dangerous Maze 期望

    你在迷宫中;开始时在你面前看到n扇门.你可以选择你喜欢的任何门.所有门的选择门的概率是相等的. 如果您选择第i个门,它可以让您回到您在xi(xi小于0)分钟内开始的相同位置,也可以在xi(xi大于0) ...

  2. LightOJ - 1027 A Dangerous Maze —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1027 1027 - A Dangerous Maze    PDF (English) Statistics For ...

  3. Lightoj 1027 - A Dangerous Maze 【期望】

    1027 - A Dangerous Maze PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Y ...

  4. [LightOJ 1027] A Dangerous Maze

    A Dangerous Maze You are in a maze; seeing n doors in front of you in beginning. You can choose any ...

  5. A Dangerous Maze (II) LightOJ - 1395(概率dp)

    A Dangerous Maze (II) LightOJ - 1395(概率dp) 这题是Light Oj 1027的加强版,1027那道是无记忆的. 题意: 有n扇门,每次你可以选择其中一扇.xi ...

  6. LightOJ - 1395 A Dangerous Maze (II) —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1395 1395 - A Dangerous Maze (II)    PDF (English) Statistic ...

  7. (期望)A Dangerous Maze(Light OJ 1027)

    http://www.lightoj.com/volume_showproblem.php?problem=1027 You are in a maze; seeing n doors in fron ...

  8. Light OJ 1027 - A Dangerous Maze (数学-期望)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1027 题目大意: 一个迷宫, 有n个门,选择一个门花费为|ai|, 如果选择的 ...

  9. LightOJ 1027 - A Dangerous Maze(求期望)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1027 题意:又一个迷宫,有n个门,每个门又一个值num,如果num>0 说明在n ...

随机推荐

  1. Opencv 的数据结构

    opencv的基本数据结构 结构 成员 意义 CvPoint int x,y 图像中的点 CvPoint2D32f float x,y 二维空间中的点 CvPoint3D32f float x,y,z ...

  2. LM算法

    最小二乘法的概念 最小二乘法的目标:求误差的最小平方和,对应有两种:线性和非线性. 线性最小二乘的解是closed-form即x=(A^T A)^{-1}A^Tb, 而非线性最小二乘没有closed- ...

  3. Linux 目录操作和4中文件拷贝效率测试

    /*1.用户输入任意目录名称,显示该目录下的文件列表信息,包括文件类型,文件权限,文件大小,文件名称2.拷贝用户输入的文件到当前目录下3.第二点功能,使用4种方式完成,并比较说明效率*/ /* str ...

  4. C# send mail with outlook and word mailmerge

    http://msdn.microsoft.com/en-us/library/microsoft.office.interop.word.document_members(v=office.15). ...

  5. MongoDB安装,启动,注册为windows系统服务

    MongoDB安装与启动 周建旭 2014-08-10 解压完后配置环境变量 下载Windows 32-bit或64-bit版本并解压缩,程序文件都在bin目录中,其它两个目录分别是C++调用是的头文 ...

  6. python学习笔记6(字典)

    映射:键值对的关系,键(key)映射值(value) 字典是Python唯一的映射类型 >>> phonebook = {'} >>> phonebook {'} ...

  7. 1972: [Sdoi2010]猪国杀 - BZOJ

    题目太长,我只发链接吧 wikioi(排版看起来舒服一点):http://www.wikioi.com/problem/1834/ bzoj:http://www.lydsy.com:808/Judg ...

  8. hibernate多对一单向外键

    hibernate多对一单向外键: 描述:

  9. win8系统中PL/SQL Developer连接Oracle出现的问题

    注意:所有软件最后不要安装在program files (x86)下  PL/SQL Developer显示Not logged on 以管理员的身份打开PL/SQL Developer 2.   t ...

  10. pthread_create()之前的属性设置

    一.pthread_create()之前的属性设置1.线程属性设置我们用pthread_create函数创建一个线程,在这个线程中,我们使用默认参数,即将该函数的第二个参数设为NULL.的确,对大多数 ...