思路:由于m非常小,只有5。所以用dp[i]表示从位置i出发到达n的期望步数。

那么dp[n] = 0

dp[i] = sigma(dp[i + j] * p (i , i + j)) + 1 .   (-m <= j <= m)

从高位向低位暴力消元,每次消去比他高的变量。

如 dp[i] = a1 * dp[i - 1] + a2 * dp[i - 2] …… am * dp[i - m]。

 #include<iostream>
#include<stdio.h>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<cstring>
#include<vector>
#define ll __int64
#define pi acos(-1.0)
#define MAX 50002
using namespace std;
double a[MAX][],p[MAX][],consts[MAX],q;
int c[MAX],cc,l[MAX],r[MAX];
int main(){
int n,m,i,j,k;
while(scanf("%d%d",&n,&m)&&(n+m)){
memset(a,,sizeof(a));
for(i=;i<=n;i++){
cc=;
for(j=;j<=m;j++){
scanf("%d",&c[j]);
cc+=c[j];
}
p[i][m]=1.0;
for(j=-m;j<;j++){
p[i][j+m]=0.3*c[-j]/cc;
if(i+j>=) p[i][m]-=p[i][j+m];
}
for(j=;j<=m;j++){
p[i][j+m]=0.7*c[j]/cc;
if(i+j<=n) p[i][m]-=p[i][j+m];
}
}
for(i=n-;i>=;i--){
l[i]=max(,i-m);//记录该方程的下界
r[i]=min(n,i+m);//记录该方程的上界
for(j=;j<r[i]-l[i]+;j++)
a[i][j]=p[i][l[i]+j-i+m];
consts[i]=1.0;//记录常数
for(j=r[i];j>i;j--){//将比i高位的变量消去
if(j==n) a[i][j-l[i]]=;//dp[n]=0
else{
q=a[i][j-l[i]];
if(fabs(q)<1e-) continue;//从i到j的概率为0,不需计算
for(k=;k<j-l[j];k++)//将相应变量的系数相加
a[i][k+l[j]-l[i]]+=a[j][k]*q;
consts[i]+=consts[j]*q;//将常数项相加
}
}
q=1.0-a[i][i-l[i]];
for(j=;j<r[i]-l[i]+;j++)
a[i][j]/=q;
a[i][i-l[i]]=;
consts[i]/=q;
}
printf("%.2lf\n",consts[]);
}
return ;
}

hdu 4579 Random Walk 概率DP的更多相关文章

  1. HDU 4579 Random Walk (解方程组)

    Random Walk Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)Total ...

  2. HDU 4089 Activation(概率DP)(转)

    11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况.   像概率dp,公式推出来就很容易写 ...

  3. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  4. Hdu 5001 Walk 概率dp

    Walk Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5001 Desc ...

  5. 【HDOJ】4579 Random Walk

    1. 题目描述一个人沿着一条长度为n个链行走,给出了每秒钟由i到j的概率($i,j \in [1,n]$).求从1开始走到n个时间的期望. 2. 基本思路显然是个DP.公式推导也相当容易.不妨设$dp ...

  6. HDU 2955 Robberies 背包概率DP

    A - Robberies Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  7. HDU 4576 Robot (概率DP)

    暴力DP求解太卡时间了...........写挫一点就跪了 //hdu robot #include <cstdio> #include <iostream> #include ...

  8. 2016ACM/ICPC亚洲区沈阳站H - Guessing the Dice Roll HDU - 5955 ac自动机+概率dp+高斯消元

    http://acm.hdu.edu.cn/showproblem.php?pid=5955 题意:给你长度为l的n组数,每个数1-6,每次扔色子,问你每个串第一次被匹配的概率是多少 题解:先建成ac ...

  9. HDU 4089 Activation:概率dp + 迭代【手动消元】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4089 题意: 有n个人在排队激活游戏,Tomato排在第m个. 每次队列中的第一个人去激活游戏,有可能 ...

随机推荐

  1. STL学习笔记序言

    笔者作为计算机科学与技术专业的学生,学习并使用C++已经有3年了.在接触STL之前的编程习惯是,所有程序的功能包括数据结构.算法等都是亲自实现,效率极其缓慢.后来从使用STL的vector开始慢慢的感 ...

  2. mac实现jni的demo

    今天在看ArrayList 源码时看到了System.arraycopy 这个方法,但是这个方法没有java实现. 后面一通查询查找,才知道 如下图 native是一个java调用c语言来实现的操作的 ...

  3. ADO.NET笔记——使用连接池

    相关知识: 连接池的意义: 应用程序往往涉及大量的,并发的数据访问操作 数据库服务器能够同时维系的连接数量非常有限.如果某个数据库访问操作不及时关闭连接,就会减少其他调用对数据库访问的机会.因此,一般 ...

  4. python 快速入门

    根据以下几个步骤来快速了解一下python,目标是可以利用python来处理一些简易的问题或者写一些工具.   1.编写Hello world 2.学习 if,while,for 的语法 3.学习该语 ...

  5. QA如何增强网站建设公司竞争力

    在上一篇文章<QA在网站建设公司中的作用>中我们已经详细说了QA的作用,不过有一点没有明确说明,也就是只有在超高速发展的网站建设公司中才会充分体现QA的价值.这并不是说在发展稳定的公司或低 ...

  6. 跨域名设置cookie或获取cookie

    可以使用jquery里面的ajax中的jsonp的方式来访问就可以了.代码如下: $.ajax({ url: 'your url', data: {'xx' : 'xx', 'xx2' : 'xx2' ...

  7. 十一、 BOOL类型、分支结构和关系运算符

    BOOL类型:表示非真即假.只有两个值:YES和NO,而二进制只识别二进制数,所以,将YES替换为“1”,NO替换为“0” BOOL数据类型占一字节的空间内存 BOOL数据类型输出为:%lu:输入为: ...

  8. 深入mysql_fetch_row()与mysql_fetch_array()的区别详解

    这两个函数,返回的都是一个数组,区别就是第一个函数返回的数组是只包含值,我们只能$row[0],$row[1],这样以数组下标来读取数据,而mysql_fetch_array()返回的数组既包含第一种 ...

  9. nodejs Q.js promise

    var Q = require("q"); documentation for Qhttps://github.com/kriskowal/qhttps://github.com/ ...

  10. KVM通过qemu实现USB重定向

    KVM是通过qemu来支持USB设备的,可以在启动的时候就指定需要连接的USB设备,也可以系统启动后动态的添加删除.通过qemu的help可知,使用qemu的usb_add host:xxx:xxx来 ...