Knight Moves
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13222   Accepted: 7418

Description

A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part.

Your job is to write a program that takes two squares a and b as
input and then determines the number of knight moves on a shortest route
from a to b.

Input

The
input will contain one or more test cases. Each test case consists of
one line containing two squares separated by one space. A square is a
string consisting of a letter (a-h) representing the column and a digit
(1-8) representing the row on the chessboard.

Output

For each test case, print one line saying "To get from xx to yy takes n knight moves.".

Sample Input

e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6

Sample Output

To get from e2 to e4 takes 2 knight moves.
To get from a1 to b2 takes 4 knight moves.
To get from b2 to c3 takes 2 knight moves.
To get from a1 to h8 takes 6 knight moves.
To get from a1 to h7 takes 5 knight moves.
To get from h8 to a1 takes 6 knight moves.
To get from b1 to c3 takes 1 knight moves.
To get from f6 to f6 takes 0 knight moves.

Source

 
 
 
解析:题意为求从棋盘a处到b处需要跳动的最少次数。广搜一遍即可,要注意骑士的行走方式。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXEAAAEiCAIAAACA/3WqAAAgAElEQVR4nO2dfXxT1f347+YGFQimtMNSEDPAWtFqoMJCYRIRNV9pR1lRoSpExVpc1crDqFO4K06qUgyCrIYHU3loQQstRSidSESBCr+MDEQ6GCPjMVAKgdISWmk/vz9OuQ1JmtzknntzUz/v1+cPSJOcnJvPeec83XsZQBAEoQcT6g+AIEiHAp2CIAhNfu5OaWlpmTNnL8MYx4zZfPXqtVB/HFnQ0tIye/aeDnBMWPb/MYyRYYx9+665csXZ1NT0008/hfpDBQP3dTQ0OFtaWkL9cfzws3YKl3MMY5w9u2Lv3r3//Oc/m5qa5P+1iUdx8X+4Y/LMM6V79uzZuXNnOB6T1NRK0g6XLLEwjHHVqqpdu3ZZLBan0xnqjxYArl/HnDlb9+zZs337dpl/HT9rpwDAmjWHGcbYrdvSTz/dOHXq1PT09D179jQ2Nob6c4WS778/+6tfGRnGOH9+6bRp01JTU/fu3Rtex4T7tSgt/eHFF0u7djUOHvzohg0bVq5cmZ6efv78+ebm5lB/Rr4UFR0hdTEYNhUUFAwcONBsNtfV1clWKz93p5Bfs549V5SUlD300EO9evV64403Ll26FOrPFUrIYJAck9GjR8fGxobXMdmz51ynTssYxtinz6odO3aVlZUNGjQoLS0tIyNjzJgx0dHRU6ZMuXjxYqg/Jl9Iit5++6fl5VteeeWVnj17jho1qqamJtSfq11k5xTyC9O375odO8506rQsMtJ07NhlkcqqqbnatesKhjGOH782Lc1Efg1mzjQ2NDSIVGJ7NDT8NHjwevIBRK1ye5DDHhlp+uGHC4MGlTCMcdiwVatWrendu3dkZKTRSOeYuPbkv/vOLvwN3XA9jCS6dVuanf1Ov3797rrrrvfee2/9+vUPPvjgQw89dO7cOSolutaob981Tifl+RouRYcNW1VaunHYsEcZZlHnzkv+9a+TdAuiiLycQpS8Y8fpXbtOk5+avn3XXL7ccP36dTGK437QnnhiDZcZMTGmurqrYhTXHpxGr1xxXr7sHDSoJDl5S1OTKFX2Cjnsy5b9eOnS1Wee2UaOybRpJe+++25kZGRsbKzVahX4FZC28cYbu65caSTOGjNmc2OjKDOmpDq33bZi7dqvNm/ePGnSpN69e2s0miNHjjidzm+//Xb37t1UhnKkoMhI0+HDtZcuXSX1YhjjHXesrq+/RmVswqXo9OnrP/lk9S9+sZgUkZX1jUiNQjgycgppWmPGbP7Pf/777bf7IiKWMoxx0qTyvXv3Hjhw4PTp09RLJJ18hjH+8Y9F06dP//3v32cYo0KxbPPm75uamqgX5xVS6+TkLadP26urq0ePXs8wxt//vvjCBYc0A2bXw/7jjz9qtevIQfj0041PP/20QqEYNWrU2bNnhRRBGkZy8paLFy/9+9/HBg5cwzDGpKTV1dWHqR/n+vqmBx74nGGMw4ev2bZte2VlZX5+/pgxY3Jzcy9fvtzS0kJr9Yfrobz4YsXBgwctlgN33VVIJrZtNtvJkyfr6+uFf4Pk2+neffknn5THxy+Mjo675ZYlDGMcMaLIbN7hdMpxGUguTuF8vHr19zt27Bg79hly7GbM2LBhw4bBgwdv27aN7hFsaPiJ6+Rv3lyRm5v7+ONvkSyZNWvZggULrly5IvYXxtV67VrLnj175s+fHx09m2GMH3ywYerUqf/73//E/i1yPey7du1KTX0qMjKfTKasW7f+nnvuUSgUc+bMqaurC7oIrvdeXn5o375906YVkYP8wQcbXn/99ZKSkoaGBorH+fvvz5IajRu3Zvv27YWFhZMmTYqLi5s+ffqlS5coFkQ6Kd27L1+79quVK1fefXdCr14fM4xx6NDCtWs/X7Bgwbhx4/71r38J9Bc33/fmm18kJ0+Oj3+WHL3x49cuXbp06tSpFy5ckJtW5OIU4uNRo0q2bdv+9ttv9+s36pe/LODmumNiYu677z6yikarRC7XZ8zYsGLFit/+9rdK5WgyAjcaS4YPH15YWHj1qriDIJIxo0aVbN/+zezZs/v16/eXv/xl1apVa9euffTRR4cPH37s2DFRVyjIB4iN/ewf/9jOsmz//o/84hd/ZxhjWlpxQUFBVFRUdHR0eXm5kJEC+WYfe6ysqmrP8uUrO3XKJQ2vpGRDWlraHXfcUVZWdu0atV0wXPfhjTe+2Lp1a1ZWVlRUVNeuXdVq9Zo1ayguJHOtfePGzZMnT46P15FDp9GsNBg+uv/++++///6XX375yJEjQX+DNTVXu3RZzjDGRx4peuqpVTqdbtCg2aR2H35Y/u67795+++25ublXrlyhVSkqyMIpXPPOySkvLS0dMmTI7be/SL6w8vItr732mkKhiI+PP3bsGEUlkyW67t2XFxZuIkUoFBMZxvib3ywvKSkbPnz4I488QmsmzyuutS4uLu7fv//vf//70aNHf/3111qtNjIyslevXkVFReLtp+A+wMSJ68vKyoYMGRIVNZmkbH5+2dSpUxUKxcCBA0+cOBH0YeeKeOutzevWbSZ9z+HDDf/4xz/efvvtXr163XbbbQsXLqyvr6dVKW4yZdWqLZs2bXrkkUe6du36xz/+ccOGDadPn6bY7yMDZ41mZWnpxqSkpK5dnyaHbvr09e+8806PHj1GjRr1wQcfCFkv4/z40EOrjcYVkyZNiYh4h7SLsrIv9Xq9QqF48sknL1y4QKtSVJCFU7geuMGwaf78+b17303moshc98iRI7t06ZKenk732HErpl98UTp8+PCuXSNJtz8trXj9+vX9+/fv3bv3jz/+KF43gcsYg2HTvHnzBgwYoFKpCgoKLl++vGfPniFDhgwaNOif//yneMMf7gMsXPjl4sWLY2IGkMOuUCxbtmzD8OHDu3XrptfrhSy7ct8sCYVi1ksvvbxp0yaWZe+8887IyMjf/va3O3fupLW9lVv36dWrsKLiq5KSElJKQUHBpUuX6H6VZ8/Wd+my/De/Wb5u3fo+fUYwzBIySVRSsoHMQ40fP/7kyZNCfgW5XTYzZ5YWFhY+8MDwX/7yYyKy9etLhwwZ0q1bt9dff11uy/yycArpMigUy0ym8oyMjC5dniKHcsaMDUVFRb1791YqlZ988gnFJV5uMiUtrfizzz6LjY3t2nUk6bZ89tmXH3/8cY8ePXr37i2k4+oXrtaFhZteeeWV6Ojohx9+mGRhY2PjgQMHqqurKQ4KPCFOIYf95ZdfjogYTw77sGGrVq5cTQ67wFVk1/1aixcvzsrK0uv1ycnJDz/88EMPPTRgwIAlS5Zcvkxt4ZzrFo0YUbR16z8+/PDDqKio2NjYvXv3iqHmnTtPkc2BJP7yly/Xr1//4osv9ujRo2vXrtOnTxdSNc6PSUmrv/xyS1ZWVpcuD3HtorCwsGfPnlFRUaL2ZINDFk7h1l8++GDDkCFTf/WrOeSr+vDD8scfz4+MHNCnTx/hy5mucL+fCxZszMnJUSp7knF+Tk75hg0bxowZ06VLl6SkJFHHPmQLL8MY588vfe6553r06DFt2rT//vfcnDn/r6Wl5fr162Lv9XQ97A8+mHnrrVmdOn1CVpHT0vKUygeFH3bOKfn5ZZmZmbGxscOGDZs5c8ngwXPHjRu3evXqixcvUhzPcj2vP/+5bMuWLc8//7xCoXj44YcFrlt5Qhr8mDGbjxw5+v777z/99NMvvPBCfn7+vffe26tXr1tvvfWee+75+uuvhUz/cSmalla8atWquLi4W27JIr8Bn3xS/rvfvXf77b3uuuuuo0ePym1PsCycwrUuhjF267b4nnte5P47YsSfH3jggf/7v/+jmxakRIVi2YoVZSkpKb/+9WsMY3zuuY1bt26dMWNGdHR0t27dMjMzHQ4HxULdOHeugczA9ey54p138gYMGJCT80n//mvOn3dIsOQENx/2rl0XuR72gQPnDB06dMyYMQIPOxkgkIaRk5PTu3fvRx6Zdf/9n2zbtv3o0aN0V3zAZbCwcOGXGzduTEpKUigUAvsLXnHd6sYwxt/97o3Bgwfn5OTk5eXdc889w4YNKy8vFzhJxBWxYMHGt99+m/vZI8sI48ZNeeKJJ6hPCFBBFk6pr2+6//51pHWtXVvy9NPzybHLzv585syZOp1u7NixNTU1FH383Xenb721bZx/yy0fzZ//6c6dO996662+ffsqFIr77rvPYrGIvZR78qSDbMMhkZi44scfq0+dOvXBBx98//33jY2NopqlpaXliSc2kcHOunVfZGTMu+WWT8gq7MyZM1NSUh5//HGBh72lpeXTTw+4Nr8//GFldXX1oUOHXnvtte3bt9OtI5mg7dWrcPPmyqKiotjY2B49eogxOuAGWa7x5JPrvvnmm3379tnt9mvXhO55Gzt2K2kRn3++ISUlpVu3br/5zRwilBUryt58880RI0Y88cQT58+fx7Vk71y7dm3Tpk1FRUVvvfVWXFzcq6++unbt2iVLljz99NNRUVFz585dv349xf0FLS0tdXV1s2fPLigoyMjImDlz5ldffTVr1qw777xzwIABffv2/eijjyRYomtubt6/f//ChQvXrVu3dOnS6dOnz5w5U6vVLlmy5Isvvti/f7/YW++amppKS0tXr1791ltv9e/ff8qUKcXFxUaj8ZlnnomOjv7b3/5WVlZGtooFXcT169fNZnNhYeHnn39eUFCQm5s7Y8aMwYMHFxUVLV26dO/evbTqyE1ATJhQUllZybIsmQOurq6mPjpITa3s23fNxo3b+vf/1FUrc+cWHT9+nMpPUXNz87lz58hXc+eddyoUir/+9a8nT55cvnz5jBkzhg4detttty1dunT16tUUV82oIBentLS0nDx5MikpSalUdu7cOSEh4fnnn+/Xr99tt92mUCgmTpy4YcMGurtFWlpaDh06pNVqe/To0adPn+Tk5ClTpjz11FNqtXrhwoW1tbXS6P+nn35au3Ztv379evToERkZeffdd0+dOjUzM3Pr1q1UNmL6paamZty4cT169CCH/ZVXXrn77ruVSmX37t3/9Kc/7dy5U/g29mvXrv31r38lvYbo6OgRI0ZkZ2dnZmZ+8cUXAoV1c0Va+w4ffbS5rKxs9OjRXbt2HTt27Pnz56m8P4HM7kdGmnbt+vcPP/wwZ86crKys559fQpzy2mtrMzMzrVYrlZWs5ubmZcuWpaSkdO/evU+fPl9//fW1a9fWr18/cODA7t27R0dHv/jii4cOHZLbJn25OAUArl+/fvTo0cmTJz/66KOLFy8+efJkeXn5E088MWXKlI0bN1JMPtcSDx48+P7770+aNOnPf/7znDlz5s6du337drobLv1y9erVbdu26fX64cOHT548uaCgwGq1Up9raI/m5uaTJ09mZ2enpKQYjcbTp09//fXXycnJL7300qZNm2jN7Fy+fPnvf//72LFj77333meffXbRokUHDx6kIk3SyO+4Y/U335zu1GnZ6NEbKioq58+f37NnT6VSuWDBAro/48Rc3bsvX7Nm67PPPjthwoSnnnrqzjvv6tYtj0xFz5w5c/jw4UeOHKHS1K9cubJgwYLx48dnZmYSOTY2Nm7btu2FF17429/+9sMPP0h2Egl/ZOQUALh+/frFixfPnz/f0NDQ3NzsdDpra2sdDofw0amPEq9cuXLx4sWLFy86HI66urqQfEmNjY0XL16sqam5ePFifX29xJcja25uvnTpUm1tLRHZtWvXqB/2lpaWhoaG2tras2fPXrhw4cqVK7R+Xcn6SGzsZ6++alYqP928+fuioiKNRtOtW7cBAwbQXS4k/OEPFWTya/Tox1566aWMjIxXX/2MYYz33ff3VavWkMspmEwmKt1qMki/cOGCw+EgIziy1cDhcFA8hnSRl1MQJFCuXGkkE/y33lrw8cfF33777ahRo3r27BkdHT1z5kwxVu6am5vz8r5ym6DNz9+9Z88esjlFqVR+/PHH0l8xQyagU5Cwp6mp6aOPPho/fvzjjz+ekJAwevTo/v37jxw5Urwti42NjYsXL05JSZkwYcKnn3761Vdfbdmy5Zlnnhk5cuQDDzyQmJgowaKhbEGnIB2B+vr6uXPnxsXFvfDCC88999yzzz5rsVhEHULW1dUtXbpUo9EkJyfPmzfvo48+KiwszM3NffLJJ8vKyn62nRRApyAdg5aWlosXL5aXl69cuXLXrl01NTViz0mRGaLTp09/++23lZWVy5Yt++abb6qqqs6ePSve9F9YgE5BOghkdvnq1atSzrKTizw5nc4rV65cu3ZN5le0lwZ0CoIgNEGnIAhCE3QKgiA0QacgCEITdAqCIDRBpyAIQhN0CoIgNEGnIAhCE3QKgiA0QacgCEITdAqCIDRBpyAIQhN0CoIgNEGnIAhCE3QKgiA0QacgCEITdAqCIDRBpyAIQhN0CoIgNEGnIAhCE3QKgiA0EdEpDgfMng1ms6Qxa5bUJZrNUFkZgppyYTBAcbFEZW3aBO+8I13VZs+GykqJylq2DJYtk6gsiRPGYIC9e8Vr6O6I6JTCQoiIAK1W0mAYqUvUakGjCUFNuYiJgfh4icpSq0GplK5qERGg0UhUlkoFKpVEZUmcMDExMH68eA3dHRGdYrOBSiXe23uHCcVgLiQ15dDrwWSSqCyzGbRaicoCAJUKbDaJymJZYFmJypI4YaTMEECnUAGdIhLoFCqgUwSBThEVdAoV0ClBgk6RBnQKFdAptECnUACdIhLoFCqgUwSBThEVdAoV0ClBgk6RBnQKFdAptECnUACdIhLoFCrI3SnHt0BiBhTa/T8TnSIN6BQqoFNoEUATZDMg8UagU1xBp4gEOoUKsnSKHdJdhIJOcQOdIhLoFCrI0ik3YNEp3kCniAQ6hQroFEGgU0QFnUIFdEob6BSvoFNEAp1CBXSKINApooJOoQI6pQ10ilfQKSKBTqECOkUQ6BRRQadQAZ3SBjrFK+gUkUCnUAGdIgh0iqigU6iATmkDneIVdIpIoFOogE4RBDpFVNApVECn3MBlhz5r9f90dIo0oFOogE6hBb8maL3pZJ9EfmZBp0gDOoUK6BRa4PVTKIBOEQl0ChXQKYJAp4gKOoUK6JQg2bsX70MoReB9CKlEx74PYW6ueA3dHRGd8t13wDAYGBihj1mzxGvo7og79omNBYtF0mAYqUu0WKC8PAQ15SIlBVhWorKMRkhMlK5qsbFQXi5RWRkZkJEhUVkSJ0xKSkcZ+6BTJMsYdIrwQKfQAp0SfinimTHoFOGBTqEFOiX8UsQzY9ApwgOdQgt0SviliGfGoFOEBzqFFuiU8EsRz4xBpwgPdAot0CnhlyKeGYNOER7oFFqgU8IvRTwzBp0iPNAptAjAKYW5Ad8zDJ0iTcagU4QHOoUWfJ3CBnhSMqBTJMwYdIrwQKfQgpdTdqzwfq2DHT5fhU6RLGPQKcIDnUILXk5hXQY7/EdA6JTgYt9u52GjudpUxT9j5OyUEzMX8a+LW6BTqIT8nGK92R0uV3tDp9BKkQPltjMZ7NH8UosFjiyqqEvU1idozmSwPDNGtk6xsaam6F6np84Nrjh0CpWQn1M8aJ1byYXjPp+GTuEftSn6y0m6xliV64NnMtjmThE21mQ1O3xnjAydcrCk2qFNva5QXusz4FCRdX+l/bDR7LsinoFOoRJh4xSco6WVIvt2O5uiYg4VWd2cQv7k0KbWJ2h8tEa5OWXfbmdtiv66QmljTWcyWBtrsljg+JsFTlV8TVpmQMWhU6iE7J1i5dVJAXQK76hN0dtY04FyW1NUjFd31KboD5ZU+8gY+TiFSNDGmqpNVTbWVJui5/502GhujFUdNpr5F4dOoRJydwpZA/K94kNAp/CJQ0XWhjj1/ko7aY11idpABwjycQqpwpFFFRYLWM2Ohjj1qaw81ycQrfAvDp1CJeTtFCvfDW+ATuEX1xXK/ZV27r9H80sd2tRAM0YOTqk2VTlV8XWJWvLfw0ZzQ5x6326n63OIaA6U23gWh06hErJ2CstbKIBO4RHH5hU3d4pwfcRqdjhV8a6W4ZMxoXIKmXk9l55NFqpcB2g1aZmXk3Se7xCQNNEpVEK+TinMdRdK4QpfsyroFN9hNTvqEzRkpOAaRxZVeG2NPjImVE5piFPXJ2hOTDN4zpI0xqoOFVm9vklTVAxPaaJTqIRMneJ9K+0KXy9Bp/iO2hS9p1BInMlg3X72fWeM9E7Zt9t5OUnnOgXrFmSSyOufDhvNdn0On+LQKVRCjk45viXI+xCiU3yE21yDW5DVE54ZE5J+SnvdEIsFTkwz+LaG77pzgU6hErJzSntCwX20oqYIWWDmmTFymKN1Dbs+x23FJ7hAp1AJ2TklaNApQqI2RX/hsQk8M0ZWTrGxJv4zJr4DnUIl0CmCosM4ZX+lHRiGZ8bIyil1idpj84qpFIdOoRIdxynFxdCpEyQmShoMI3WJiYmQkACdO9N/213ddbu66x673+77aVFRoFJJVNO4OFAofD1h2CDn6U4qv5+ZZ3TuDAkJElUtNhZiYyUqS6SEaS+iomDiRPEaujsiOmX/foiJAbNZ0mAYqUs0m6G4WJSa7qh0Xhiq+3F2se+n6XQwa5ZENTUYQK329YTj6TnH03NoFRcTA8XFElVt8mSYPFmiskRKmPZCp4P588Vr6O6IO/aR8ub1BEbECrWLiDW1WkGt9v0UvV66nq3ZDFpt+3+uqvL7aQNCpQKbjeL7+YJlgWUlKkvipiFlhgA6hQri1tRkAr3ex99l5JQJE6C4mGJx6BQqoFME0QGdAgDZ2WAwtPdHGTlFqwWzmWJx6BQqoFME0TGdYreDRtNe85KLUxwOUKvpOgCdQgV0iiA6plMAwGCA7Gyvf5GLU3x2poIDnUIFdIogOqxTAECng4oKz4dl4ZSKCkhNBaeTbnHoFCqgUwTRkZ1itYJG49luZeEUjQaqqqgXh06hgnydctOpySv8Pz8snZKdDVqtl/DWQeCQrqbeugOhd4po9UenUEGmTvG8DyGf6+aHmVPs9nb3zOl0wDDtfTOS1tRj2iL0TsnLg5wcMYpDp1BBjk5xvRqT62nKfs9LDien6PWgVrc3D+obSWtqt0N8PDgc3AOhd4o4Ax9Ap1BCjk45frM72I7nFLMZGAbsvK+LeTNS17S42HUEFHqniNb0231jpxPy8kClAobxFYFslkGn0CLwJnjjPoTpW/w8MWycQuZQBBz1ENSUtCirFULuFKcTYmKC1rFvvDuluhr0esjO9iOy0aNhwQL+ZaFTaBFgE7whFD5Xug4bpwj+mQ1JTVsHQXZ7iJ2SmQl5eSIV5+WbKS4GtZpXhdPTAzou6BRaBLvuw2PpB50iOgUFkJkZYqeI1kkBr9+MRuO/uIICqKric/qlK+gUWgTcBF0XgHwPf8LGKampUFra9t/S0pv+y4OQOQUAsrPL1GzInFJVBRqNeMUFY3uTqW3OOJBsQKfQIpgpzbYOi8/l5LBxitMJKlXbr5/ZDKmpbfN8en3rcnL7hNIpAJUDs/dMpLwpvj3cnVJRATqdeMUF5hQyzxIR0baZCJ0CAGHhFAAozG3Vio+bnIaNU8DnUTeZWre9tX/BgdA6Ra+Hq7fFQHW1BGW5OyUz0/duQIHwdQrpm8THu3+J6BQACBentO5S6Rj9FACw2UCr9ZO/riuXN3f4Q+6UillmiI+ne+0Sr9zkFJMpuO08/PHvlAkTWvuSXjfIoFMAQI5OsXqZkSVO6SDzKYTiYpgwge+TU1NBo2ntv+h0J7+zhdYpJhOAw+H3HALhtDnF6QSNhixmi4cvp1RUgFYLqam+Xo9OAQAZOsV1uad1pHNjRdnHwAfCzikQyLF3ONq27VdU/NRHVdkltTUruZDqa2z71NXVoNG4brGlTptT2r/2AkW8OyU7GxgGdDowm/2cCY1OAQAZOqW9e4b53aISfk4BALU6iJ96mw0yepa6OyUmpq0vo9VCdrZIa643ZYw41xzgaHMK7Uu6eaXNKTYb6PWg1bbOm/AE96cAgAydAh5a8buDlhCWTjGb+W6pcsF7TW22m85CNBh8XKtNCO4ZI6ZWWp0iwiXdvNLqFLLTxGRqPZLilItOoQVeP8UDpzPQrgrfmtpsbT0X0kJonHrnJWMyM6GgQPg7e2I2Q/IIB2i1Ys+kEDJ6ll4dqQOtVtQBHQGdQgt0CgUCqKnd3vpjy/Xk9XpgWSFtxkvGOMRq9t9tcliV4gvFZAKWBbW6skvq2cIKCYQC6BR6oFMoIKimJhPk5EBEBOh0UFDgd3+dJ94zRgytOBwOtXbKg2IKxW4HlQpSU4FlwWrFax1QoeM4Zf58P2eiY7iGjqkoYDLNjNbMaE2MXvgbxjPVVkYdwThpfcIqRqNhqkQ9CBWMTsdUhPy76Hgxdqx4Dd0dcfspeA/24MLGmrh0qE3RW80O33fYbu8e7CemGc6lZ1P5SMfmFV94bAKfe7AHEVazozZFDwxz/M0C18fxHuxUouPcgx2dQiVsrKkhTl2XqK1L1J7KyvOaMe05xWKBMxnsmQxW4Gc4WFLdEKfet9tJ1ykHym21Kfq6RG1jrMrGmjyfgE6hEugUQdHxnGKxwIFy22Gj+bDRbNfn1KboT2XlufZcfDvFYoEzGaxdnyPkA9QnaKpNVRYL0HKKjTXZ9TlOVbyNNR02mtvriKFTqAQ6RVB0SKe4Btcajyyq4DLGt1MsFjiVlefQpvoeQ7UXtSl6rhNBxSk21tQUFXMqK2/fbqfvZ6JTqAQ6RVB0eKeQ2F9pv5ykA4a5rlBuu0Nf8bjB70uO5pfWJ2gOllQHVJCrUCwCnLJvt9OuzyEzRA5tKs+PgU6hEugUQfEzcQoXVrNjodpUpcluiFP77YkcLKmuT9AczS/l+eY1aZluk6ZBOGXfbufR/NLGWFVNWuahImtAr0WnUAl0iqD4uTnFcmPsc6jISpruufTsMxms1ylPiwWsZiMgLWAAABR0SURBVIdDm8pn1vZUVl5DnNrtwSCcUpuir0/Q7K+0B1E1dAqVCA+nFObyumcYOkWajOHmU6xmx4lphjMZbG2K3q7POVBu8/qSMxmsQ5vqYzrjXHp2bYre8+X8nXI0v/S6QklGOsHN41jQKZQiDJzC54JMgE6RMGO8ztGeyWCbomLOZLBe+whH80t9aKUuUXvYaPZ83K9TDhvNRFiXk3TtGY1/oFOohOydcuPiKeiUUKWIZ8a0t+5jY01nMtjGWNWprDzPadEjiyq8auXIoorLSTqvb+jpFCIRpyqezL/WJWrPZLD8p2x8BzqFSsjdKdyVaNEpoUoRz4zxvZZM1lycqviatEy3P5HeituDDXHq9iZTXZ1CZnyJRAJdTuIZ6BQqIWunHN8C6eiUUKeIZ8b43Z9CoiYt03MnrttqsVfLcGEyONb0zG7uFAEM41TFk41w4gU6hUrI2Cl2SM+F41Z0SohTxDNjeDrFanaQPf6ucyXkQdIxOVBuq0vUep0HOWw016Rl1kWpFtxh8LtXjVagU6iEfJ1SmAuF9huXvEanhC5FPDOGp1NIHDaa6xK1wDDcWTZWs6M+QWN/4S03oZA+CzdRcvzNApPBIcY5hO0FOoVKyNQpx7fcuGQkOiXUKeKZMQE5hQtyCl9DnNpqduzb7XQ89IfLQx751zcOiwVOZeU5VfEObarbbKtI5yW3F+gUKiFLp5BRD/k3OiXUKeKZMcE5hcShIuuZKbMb7h5k1+e0/OrXDfcNJXtbvE67olOoBDrlxqiHgE4JdYp4ZkxATjlYUk3Ocubi2Lxi5513/9S9BzCMjz24FnQKpfjZO8Xq/V4cfu/IgU6RLGP4O+VQkdWpiiczta7REJ/YcsuvgGFqkyf/WLyfz1qyBIFOoRLoFEGBTnELq9lx/M0Cbk8amT3xfNrxNwvq7x0KDNPU4/b/vvf5dYUyuH20dAOdQiXk5xQ3cOwT6hTxzBivTqk2VV14bEJTVExNWqbfPWl1iVpy8QSy4Y0sMJMzEl3lgk6hEuiUm0GnhDpFPDPG1Slcx6Q+QXNsXjGfvSSHiqwNcer9lXZyRVhuu+2BctuJaYa6RG1zpwiyX7Zyaik6RXigU24GnRLqFPHMGOIUq9lBzu7h0zHhwnXPGzDM/kp7U1SM23P27XaS83ps6tTaX8f4OOOZbqBTqITsncIbdIo0MUHnMI9kz6VnN8aqzmSwAV1YwFUoFgvUpugtFvDclsKF0QiP3W8/lZXXGKsiu+BErRo6hUqgUwTFz80pVrPjQJTWPJI9Mc0Q6GVK3ITChY8d+q7zKWS3fkOcWryzftApVAKdIig6vFP27Xaeysojd9ggU7Cvj7QGt+etvYukWNrXiucc7aEia32C5rpCSSZcAr06pO9Ap1CJjuOUf/8boqLAaJQ0GEbqEo1GePddcWu6abp591OG03Ha03Ha2jvUVl2OJZm1JLPbphQv/9iZlASTJwf8nkXzbHVRKh9PKHnbWnuH2u3B6dMhLs7Lk00Gx6bpZksyW3uHui5K9eNDmVteq9g03bxputlkcARd8agoePddib7E5GRITpaoLLETxi2SkmDJEvEaujsiOmXRIoiIAK1W0mAYqUskd1IXqabZavN30alWpfaLPtnZanO22jxpaLXbc2JiID4+4Le1R6jmDiz2/bTvolPfvq/U9RG1GpRKP28+QWP7MK5gTw+dVan9Tzf1f7qpC1VsttocRPUjIkCjkehLVKlApZKoLPESxmvExMDEieI1dHfwHuwUEKWmVVVgNoNaDQaD7ycGfIftigrQ6Xjd3LyqCjQa1wfMZtBqAynL6YS8PNDrW2/V6q8ubuA92KnQce7B3qGcYrdDXh5YrV7/SKemNltrXrMs6PWtP9A6Hdjb36oMAIFmTEUFpKaC08n3+ZmZUFDA/S9gp7hSXQ0aTUDZjU6hAjpFEKI4paICVCrIyWkvwf3U1Gxui9JSUCq5+6vfFCpVm1MCSYEAMsZqBY0mAKEAgNMJ8fFcxQU5hbxepQKHg+fT0SlUQKcIgr5TePywu9fU4YDU1NaxrFoNMTFtQ9vUVP4tiicBZIxGA1VVARdQVQVaLTkCQp0CAFYraLU8DwI6hQroFEFQdorDASqV39GHzQbjelW1ZqVSCUollJa29U38vVwgfDNGyPdhMEB2NlBxCgSgFXQKFdApgqDplIoKiI/39W1UVJDex7VBmn2dNUEMW6jAK2McDtBooLo6+GJ0OqiooOMUACgthdRUv89Cp1ABnSIIak4hQx6vXYyKCoiIaJ0EKSgAs/nMhirpa8rBK2OCG/W4Ul0NavWOSicdp5CPpFb7/ujoFCrI1yk7VgR8/ZSwdIrDASzrZQ6F/EaTtZjSUte/hKSmHP4z5sbIRSg5Of99KY+aUwDAagW93sfkNzqFCnJ1Cnf7QdfweWpyuDpFowGW9SIUpbJ1fsRjvlbWTgl08dgHTmdD3/gJGhuFt3IlLw/Uaqio8PwLL6eYzVQ+BTqFFgFcN9+zk9J6Jf12CD+nVFWBwQATJtz0IMu2bs5t/2uRr1OKi0GnoyMUAACwGsxWJcWOyg0cDtDpIDvbbQcQL6dQkgE6hRZ8m+BNl7nmR5g5pbQUYmJAr29tgdwGUB6JJlOnBLEbxR9mM6zpmwN5eRTfsw2DAZRKyM7mRMJ37EPDB+gUWvBrgjdfknYHv7cOM6eYzcAwEBPTdrqVwcDzq5CpU3Q6rwMKIbSu+4jwzm0FpKZymwAn317xv3/zc6JgJaBTaMGrCXqdnfVrljBzCsFuh6FDYeTIgF4kR6eIk0etTnE4QK0WffrUZvvmVt1PfVxO7PPdP8rOFmIFdAoteDVBNvCL5kOYOoXw+uutcyj8kJ1Tbj5JhyJt+1Oqq0GtFro+7Q+VCk7stbftHszJaTuVQasFlnX3mlrd3jlZfkGn0IJHE7S7LO64rf6s8PW6MHYKADidkJnZNr3iE3k5xWoFtVqksm7a80bOCRRpbgUAfMynkPX+CRPcJ9QFTCGhU2gRVBO08hoBhbdTCBoN6PV+nyUvp6Smum2foYiXfbQCugZ+8T9Hq9eDSgV5eW27E7Xa4KqPTqFFsE3Q6n/40xGc4nCAVuu3zcjIKcXF7j/dVPHiFH677IOD17qPzQY5OaBSQXY22O3gdPI5RcsTdAotgm+Chbk/A6cAgMPhdxOqXJzidIJWK+och/fzfXQ6yMkRo7gA9tE6nWAwtF6SwmAAvT7Q87/RKbQIvgnuWNFB99EGjlycIuaoh9DuOYR5eaDTUS8u4L35TicUFwNAq18COWcSnUILXk2QdElYq/uDrM8xATpFGvR6WLnUCZmZoFbT3eHmia/zkjUa6leHEXS+j8nEZy6MA51CC17rPukeJ/gc3+JnYz6gU6RCr4c9Ew0BtZ+g8XOtA5alc7LiDYJxCnftWxK8GxM6hRb8mqDHCYR+hQLoFKmY8werPZ7vldME4scpZEKH3hZbPC+ZCrJ0SlCgU6TAaq2O0a5ZIoVQgM913gIccfgGnUIFdIogfnZO0Wrf05klyxj/TiEb4Sh1mtApVECnCOLn5RSDAfR6KTOG17Uj6Z0PjU6hQsdxynffgVLZdnsJaYJhpC6RZeH116WuacHLVodSVaXJZllQq2HsWInKnTz5pluGtBdVmuyKxw3Ci1Mq4fXXJarayJEwcqREZUmcMGo15OaK19DdEdEpxcWgULTe2lqyYBipS8zIgIkTJa3pe6lVh2O1b060kf/GxcHIkRIVnZwMvXr5f9qMZ+21CtWMZ+0Ci1MoYOJEiaqWmAiJiRKVJXHCxMXBq6+K19DdEXfsI+XN60kwjNQlWixQXi5RTfftdtr1OfUJGqvZwT2YkgIsK1FNjUZITOT1zGPzihtjVUcWVQgpLjYWysslqhppftKUJVnCkEhJ6ShjH3QK3TiaX3o5SXcqK88zY2ToFIsF9lfaG2NV+3Y7gy4OnUIl0CmCoqM65Wh+aXOnCK8/+7J1isUCNtZUm6IPujh0CpVApwiKDumUY/OKnar4w0ZzexkjW6dYLHDhsQnH5hUHVxw6hUqgUwRF2Dllf6Xd9xOOLKpojFUdKrL6yBg5O+VMBnsmgw2uOHQKlUCnCIqwc0pzpwgff7WxpusKpQ+hWGTvFIsFalP0NtYURHHoFCoRHk5heVySFp3CJ4BhvD5+oNzm0KbWpugPllT7zRiZO2XfbmdjrMqtR3ag3Ob3hegUKiF3p7C8TyNEp/AJr07ZX2mvT9AczS/lmTEyd4rFAufSs09MM7g+wmdMhE6hEjJ2ipXXpa050Cl8wtMpB8pttSn6c+nZ/DNG/k6pNlXVJ2jcHmyIU/se1qFTqIRcncJd7oCfUACdwi88nXLhsQk1aZkBZYz8nWLxNqvid54FnUIlZOoUcqk3/jchBHQKv3B1yoFy27n07EA3dISLUzxnVez6HM8tfK6BTqEScnQKdwN2Ppdi4kCn8AnOKQfKbXWJWrdJB54ZExZOsVjgyKIKhzaV21m7v9LeFBXj4/noFCohR6dwnRTX8H0xWkCn8AvilKP5pXWJWj5LIV4zJlycYrHAsXnFFx6b4Fb99gKdQiXk6BS3lWNOMX6vcY1O8RvksqkObWpwQrGEm1MsFqhN0XPnQF5XKF3Ph3QLdAqVkJ9TXC5G2zqZYnW/5LVX0Cl8AhhGyFl2ljB0imv4nqZFp1AJGTuFM4iLZXDPm8AU8d35d4sT0wxnMthTWXmuGgprpxxZVHE5SdfeX9EpVELGTnFZ9MF9tLRShKdTDpTbatIya9IyyVYx14GSrJxSm6KvS9RycWKawW8vzMcuFXQKlZCfU7wtJLMelvEEncIn/Drl+JsFwDA+rm8kK6ccKrIeNpq5OJee3dwpgswZNXeKOJeefSaDdTvb4Gh+qUOb6vXd0ClUQo5O4daSuUlZlsf+N3QKn2jvV/pQkfVcenZdotbzTBnPjJGPU3zEvt1OMnZzquLrEzSul25oT6zoFCohR6cA11UhUypW/50UQKfwC3KuIBnRkHBoU68rlA1x6hPTDIeNZr/rQeHiFNc4ml/qekWY9sSKTqESMnUKuPRWeO7QR6fwjMNGs6tTjuaX+lhe9ZoxYecUy43LONQlam2s6Wh+aWOsytOe6BQqIV+nBAo6RbKMCUenWG5MvnDTuugUkQKdIijQKaIG9bVk34FOoRLoFEGBThE10ClUAp0SJOgUyTIGnSI80Cm0ENEpmzfjfQilCBneh5BW4H0IqUTHuQ8h3i9ZmpDh/ZJpBd4vmUqo1TBrlngN3R1xxz5S3ryewIhYoXYJSU059HrperZmM2i1EpUFACoV2GwSlUWanzRInDBSZgigU6iAThEJdAoV0CmCQKeICjqFCuiUIEGnSAM6hQroFFqgUyiAThEJdAoV0CmCQKeICjqFCuiUmy7L5BY+rqSPTpEGdAoV0Cm0COz6KZ7h+zpv6BQJQKdQAZ1CC15NcMeKdpzi7xrX6BQJQKdQAZ1CC77XjnS/7YYd0v3dQgydIg3oFCqgU2jBzyke7iCjIR8DH0CnSAU6hQroFFoE2QQLc/0MfACdIhXoFCqgU2gRVBPkMfABdIpUoFOogE6hRTBNkM/AB9ApUoFOoQI6hRbBNEE+Ax9Ap0gFOoUK6BRaBN4E+Q18AJ0iFegUKqBTaBFwE+Q58AF0ilSgU6iATqFFwE2Q58AH0ClSgU6hAjqFFgE2Qd4DH0CnSAU6hQroFFoE1gT5D3wAnSIV6BQqoFNoEVgT5D/wAXSKVKBTqIBOoQVeP4UC6BSRQKdQAZ0iCHSKqKBTqIBOCRJ0ijSgU6iATqEFOoUC6BSRQKdQAZ0iCHSKqKBTqIBOCRKjERgGAwMj9PHYY+I1dHfE7adIefN6EgwjdYkWC5SXh6CmXKSkAMtKVJbRCImJ0lUtNhbKyyUqi9yuXJqyJE6YlJSO0k9Bp0iWMegU4YFOoQU6JfxSxDNj0CnCA51CC3RK+KWIZ8agU4QHOoUW6JTwSxHPjEGnCA90Ci0CcEphLt+7hRHQKZJlDDpFeKBTaBHYvU1b7/Lj9t92QKdIljHoFOGBTqEF33uGud11sPXOhP7uQ4hOkSZj0CnCA51CC15OYW+Md3bceIS7g/KO9l+FTpEsY9ApwgOdQotA+ikZkLii9RHsp4QwRTwzBp0iPNAptODlFK5XwnmE5TFNi06RLGPQKcIDnUILvus+rR2TDPcOiw/QKZJlDDpFeKBTaBHAWvJNvRUeWkGnSJYx6BThgU6hRWD9lEJ723xtor8L6KNTJMsYdIrwQKfQgpdTWgc+NzomrpvfcN1H+hTxzBh0ivBAp9CCh1Nu7HBz7ZWwPHbTolMkyxh0ivBAp9AiSKdwU7boFOlTxDNj0CnCA51Ci0D2vLlMyuL+lBCmiGfGoFOEBzqFFoHtT2ntldzoueD+lJCkiGfGoFOEBzqFFrzXkm94xHXnm2/QKZJlDDpFeKBTaIHXTwm/FPHMGHSK8ECn0AKdEn4p4pkx6BThgU6hBTol/FLEM2PQKcIDnUILdEr4pYhnxqBThAc6hRbolPBLEc+MQacID3QKLdAp4ZcinhmDThEe6BRaoFPCL0U8MwadIjzQKbRAp4RfinhmDDpFeKBTaIFOCb8U8cwYdIrwQKfQAp0SfinimTHoFOGBTqGFiE4xGqFzZ0hMlDQYRuoSExMhISEENeUiKgpUKonKiosDhUK6qnXuDAkJEpUVGwuxsRKVJXHCREXBpEniNXR3RHTK2bPwxhtgNksaf/qT1CWazVBZGYKacvH++/DZZxKVtWkTzJolXdXeeAMqKyUqa9kyMBgkKkvihHnnHdi7V7yG7o6ITkEQ5GcIOgVBEJqgUxAEoQk6BUEQmqBTEAShCToFQRCaoFMQBKEJOgVBEJqgUxAEoQk6BUEQmqBTEAShCToFQRCaoFMQBKEJOgVBEJqgUxAEoQk6BUEQmqBTEAShCToFQRCaoFMQBKEJOgVBEJr8fxktJZcKG/BkAAAAAElFTkSuQmCC" alt="" />
 
 
 
 
 #include <cstdio>
#include <cstring>
#include <queue>
using namespace std; struct Point{
int x, y;
}s, t;
//骑士行走的方向
int dir[][] = {{, }, {, -}, {-, }, {-, -}, {, }, {-, }, {, -}, {-, -}}; bool inChess(Point a)
{
return a.x >= && a.y >= && a.x < && a.y < ;
} int bfs()
{
if(s.x == t.x && s.y == t.y)
return ;
queue <Point> q;
bool visit[][];
int dis[][];
memset(visit, , sizeof(visit));
q.push(s);
visit[s.x][s.y] = true;
dis[s.x][s.y] = ;
while(!q.empty()){
Point a = q.front();
q.pop();
for(int i = ; i < ; ++i){
Point b;
b.x = a.x + dir[i][];
b.y = a.y + dir[i][];
if(inChess(b) && !visit[b.x][b.y]){
visit[b.x][b.y] = true;
dis[b.x][b.y] = dis[a.x][a.y] + ;
q.push(b);
if(b.x == t.x && b.y == t.y)
return dis[b.x][b.y];
}
}
}
return -;
} int main()
{
char s1[], s2[];
while(~scanf("%s%s", s1, s2)){
s.x = s1[] - 'a';
s.y = s1[] - '';
t.x = s2[] - 'a';
t.y = s2[] - '';
printf("To get from %s to %s takes %d knight moves.\n", s1, s2, bfs());
}
return ;
}

POJ 2243 Knight Moves的更多相关文章

  1. POJ 2243 Knight Moves(BFS)

    POJ 2243 Knight Moves A friend of you is doing research on the Traveling Knight Problem (TKP) where ...

  2. POJ 1915 Knight Moves

    POJ 1915 Knight Moves Knight Moves   Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 29 ...

  3. OpenJudge/Poj 1915 Knight Moves

    1.链接地址: http://bailian.openjudge.cn/practice/1915 http://poj.org/problem?id=1915 2.题目: 总Time Limit: ...

  4. POJ 1915 Knight Moves(BFS+STL)

     Knight Moves Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 20913   Accepted: 9702 ...

  5. HDU 2243 Knight Moves

    题目: A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find th ...

  6. POJ2243 Knight Moves —— A*算法

    题目链接:http://poj.org/problem?id=2243 Knight Moves Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  7. 【POJ 2243】Knight Moves

    题 Description A friend of you is doing research on the Traveling Knight Problem (TKP) where you are ...

  8. POJ Knight Moves 2243 x

    Knight Moves Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13974   Accepted: 7797 Des ...

  9. POJ---2243 Knight Moves 使用A*算法的广度优先搜索

    题目链接:http://poj.org/problem?id=2243 启发式搜索:启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标.这样可以省 ...

随机推荐

  1. easy ui 表单元素input控件后面加说明(红色)

    <%-- 上传图片到图库基本信息且将图片关联到图集 开始--%> <div id="win_AddPicLib" class="easyui-windo ...

  2. 一步步学习NHibernate(9)——连接查询和子查询(1)

    请注明转载地址:http://www.cnblogs.com/arhat 在前几章中,我们把HQL的基本查询学习了一下,但是只有基本查询很显然不能满足我们的需求,那么就需要一下复杂查询比如" ...

  3. poj 2777 Count Color(线段树)

    题目地址:http://poj.org/problem?id=2777 Count Color Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  4. 1065: [NOI2008]奥运物流 - BZOJ

    Sample Input4 1 0.52 3 1 310.0 10.0 10.0 10.0Sample Output30.00 推荐题解:http://blog.csdn.net/whjpji/art ...

  5. 1191: [HNOI2006]超级英雄Hero - BZOJ

    Description 现在电视台有一种节目叫做超级英雄,大概的流程就是每位选手到台上回答主持人的几个问题,然后根据回答问题的多少获得不同数目的奖品或奖金.主持人问题准备了若干道题目,只有当选手正确回 ...

  6. hadoop 错误处理机制

    hadoop 错误处理机制 1.硬件故障 硬件故障是指jobtracker故障或TaskTracker 故障 jobtracker是单点,若发生故障,目前hadoop 还无法处理,唯有选择最牢靠的硬件 ...

  7. Comet、SSE、Web Socket

    来自<javascript高级程序设计 第三版:作者Nicholas C. Zakas>的学习笔记(十一) Comet Comet是一种更加高级的Ajax技术("服务器推送&qu ...

  8. jquery mobile validation

    <!DOCTYPE html> <html> <head> <meta http-equiv="content-type" content ...

  9. nagios plugins之 check_http

    nagios下的check_http ZT具体参数是一个比较重要的点,我带大家来看看.. //显示版本 #./check_http -V check_http v2053 (nagios-plugin ...

  10. [Ruby on Rails系列]1、开发环境准备:Vmware和Linux的安装

    Ruby on Rails是一个采用Ruby语言的遵循MVC模式的Web开发框架.使用RoR会得到更加快速爽快的Web开发体验.相比于Java EE,该框架使Web开发的速度和效率变得更加轻快和敏捷. ...