Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.

Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. IOS设备滑动事件

    只要手指触摸屏幕,滑动,从屏幕离开,系统都会产生UIEvent对象类型的事件---当然包括UITouch事件 – touchesBegan:withEvent:   当用户触摸到屏幕时调用方法 – t ...

  2. 【BZOJ 2654】tree

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  3. 使用自定义任务审批字段创建 SharePoint 顺序工作流

    http://msdn.microsoft.com/zh-cn/library/hh824675(v=office.14).aspx#odc_sp14_ta_CreatingSPSeqWorkflow ...

  4. Elasticsearch从0.90到1.2的不兼容变化-系统和设置

      本文为官方文档的翻译加个人理解.作者翻译时,elasticsearch(下面简称es)的版本为1.2.1.   1.系统级别及设置方面 1.1 es启动时,默认是作为一个前台程序启动.如果你想让e ...

  5. Visual Studio 2013 之 Productivity Power Tools

    http://blogs.msdn.com/b/visualstudio_cn/archive/2014/02/20/visual-studio-2013-productivity-power-too ...

  6. 解决 Eclipse build workspace 慢,validation javascript 更慢的问题

    鸣谢:http://zuoming.iteye.com/blog/1430925 ------------------------------------------------ 如果用到js插件或者 ...

  7. CSS的定位属性实现text-shadow属性的文本下产生阴影效果

    只要先理解text-shadow的原理,就能用定位元素进行效果的模仿. text-shadow: h-shadiv v-shadov blur color h-shadv为文本水平移动的距离,正值相对 ...

  8. 团体程序设计天梯赛-练习集L1-001. Hello World

    L1-001. Hello World 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 这道超级简单的题目没有任何输入. 你只需要在一行中输 ...

  9. struts2 权限拦截器 拦截没有登陆的请求

    假设有这样的登陆: ActionContext.getContext().getSession().put("UserMsg", userMsg); 则可以这样判断是否登陆: im ...

  10. 1.Getting Started with ASP.NET MVC 5

    Getting Started Start by installing and running Visual Studio Express 2013 for Web or Visual Studio ...