[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- mysql慢查询优化之explain的各列含义
mysql> explain select customer_id,first_name,last_name from customer; +----+-------------+------- ...
- 第一次写python
这是一个在BJDP上学习Coding Kata的时候用到的一个练习,原来打算用Java写的,但是一想正好是学习的好机会. 就用Python了.第一次,写的有些复杂. 这个题目是关于购买图书的打折信息的 ...
- python 中的列表解析和生成表达式 - 转
优雅.清晰和务实都是python的核心价值观,如果想通过操作和处理一个序列(或其他的可迭代对象)来创建一个新的列表时可以使用列表解析( List comprehensions)和生成表达式,通过这两 ...
- Linux环境变量的设置和查看方法
Linux环境变量的设置和查看方法 1. 显示环境变量HOME [root@AY1404171530212980a0Z ~]# echo $HOME /root 2. ...
- Java在mysql插入数据的时候的乱码问题解决
今天在使用hibernate的时候,插入mysql的数据中的中文总是显示乱码,之前出现过类似的问题,但是没有太在意,今天又发生了.所以向彻底的解决一下. 参考的博文: http://www.cnblo ...
- [转载]jquery cookie的用法
原文地址:http://www.cnblogs.com/qiantuwuliang/archive/2009/07/19/1526663.html jQuery cookie是个很好的cookie插件 ...
- Android开发之onClick事件的三种写法(转)
package a.a; import android.app.Activity; import android.os.Bundle; import android.view.View; import ...
- python的web压力测试工具-pylot安装使用
http://blog.csdn.net/chenggong2dm/article/details/10106517 pylot是python编写的一款web压力测试工具.使用比较简单.而且测试结果相 ...
- python参考手册--第3章类型和对象
1.对象的身份.类型.值 (1)身份:对象在内存中位置的指针,地址值, >>> a = [1,2,3,4,5] >>> id(a)48497328 >> ...
- C++开发必看 四种强制类型转换的总结
C风格的强制类型转换(Type Cast)很简单,不管什么类型的转换统统是: TYPE b = (TYPE)a C++风格的类型转换提供了4种类型转换操作符来应对不同场合的应用. const_cast ...