Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.

Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\wedge \cdots \wedge y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_\sigma \ve_\tau \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \ve_{\sigma^{-1}} \ve_\tau \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau}\ve_{\tau\sigma^{-1}} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\det \sex{\sef{x_i,y_j}}\\ &=\det \sex{\sef{x_i,y_j}}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. ISoft(开源)专用下载器

    继 两年的坚持,最后还是决定将ISoft开源 之后,今天再共享一款ISoft专用下载器小工具.这款工具是一年前开发的,也是一直闲置着没去扩展更新.当时开发出来就是仿穿越火线专用下载器的样式来做的,现在 ...

  2. Apple移动设备处理器指令集 armv6、armv7、armv7s及arm64-b

    Arm处理器,因为其低功耗和小尺寸而闻名,几乎所有的手机处理器都基于arm,其在嵌入式系统中的应用非常广泛,它的性能在同等功耗产品中也很出色. Armv6.armv7.armv7s.arm64都是ar ...

  3. 通过分析WP的代码来学习PHP。1

    下载了WP的代码,并且应用到了网站上面,现在也在正常的运行中,地址是:www.freealgorithm.tk .具体的申请过程就不赘述了,学习WP的代码. 他的目录结构就不看了,可以下载同名文件我会 ...

  4. asp.net中js和jquery调用ashx的不同方法分享

    代码如下: var xhr = new XMLHttpRequest();            xhr.open("get", 'Controls/gengCart.ashx?C ...

  5. bootstrap-treeview

    简要教程 bootstrap-treeview是一款效果非常酷的基于bootstrap的jQuery多级列表树插件.该jQuery插件基于Twitter Bootstrap,以简单和优雅的方式来显示一 ...

  6. [转载]AOP面向方面编程

    1.引言 软件开发的目标是要对世界的部分元素或者信息流建立模型,实现软件系统的工程需要将系统分解成可以创建和管理的模块.于是出现了以系统模块化特性的面向对象程序设计技术.模块化的面向对象编程极度极地提 ...

  7. setjump 和 longjump

    goto语句可以用于同一个函数内异常处理,不幸的是,goto是本地的,它只能跳到所在函数内部的标号上.为了解决这个限制,C函数库提供了setjmp()和longjmp()函数,它们分别承担非局部标号和 ...

  8. 【leetcode】Container With Most Water(middle)

    Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai).  ...

  9. jquery的ajax向后台servlet传递json类型的多维数组

    后台运行结果:                                                                                      前台运行结果: ...

  10. DX 绘制位图

    简单地学习了四个API: HRESULT CreateOffscreenPlainSurface( [in] UINT Width, // 宽度 [in] UINT Height, // 高度 [in ...