逻辑回归损失函数(cost function)
逻辑回归模型预估的是样本属于某个分类的概率,其损失函数(Cost Function)可以像线型回归那样,以均方差来表示;也可以用对数、概率等方法。损失函数本质上是衡量”模型预估值“到“实际值”的距离,选取好的“距离”单位,可以让模型更加准确。
1. 均方差距离
\[{J_{sqrt}}\left( w \right) = {\sum\limits_{i = 1}^m {{y_i}\left( {1 - p\left( {{x_i};w} \right)} \right)} ^2} + \left( {1 - {y_i}} \right){\left( {0 - p\left( {{x_i};w} \right)} \right)^2}{\rm{ (1)}}\]
用均方差作为损失函数,当模型完全预估错误时(y=1, p=0; 或y=0, p=1),损失是1。预估正确时,损失是0。错误值离正确值的“距离”相对较小,区分度不大。
另外,上面的损失函数相对\(\theta \)并非是凸函数,而是有很多极小值(local minimum)的函数。因此,很多凸优化的算法(如梯度下降)无法收敛到全局最优点。
2. log距离
均方差作为LR模型的距离衡量标准,最“预估错误”的惩罚太过柔和。因此,最后训练出来的模型会出现较多的“极端”预估错误情况。另外,均方差损失函数的非凸性也限制了其使用价值。
log距离作为损失函数的公式如下:
\[{J_{\log }}\left( w \right) = \sum\limits_{i = 1}^m { - {y_i}Log\left( {p\left( {{x_i};w} \right)} \right) - (1 - {y_i})Log\left( {1 - p\left( {{x_i};w} \right)} \right)} {\rm{ (2)}}\]
式(2)与式(1)的区别如下图所示:
3. 概率距离
LR模型预估的是概率,自然的,损失函数可以用联合概率分布来衡量。
\[{J_{stat}}(w) = - \prod\limits_{i = 1}^m {{{\left( {p({x_i};w)} \right)}^{{y_i}}}{{\left( {1 - p({x_i};w)} \right)}^{1 - {y_i}}}} {\rm{ (3)}}\]
比较式(2)和式(3)可知:
\[{J_{\log }}\left( w \right) = Log\left( {{J_{stat}}(w)} \right){\rm{ (4)}}\]
由于log函数为单调递增函数,log距离和概率距离本质上是一样的,训练得到的结果也应该一致。
逻辑回归损失函数(cost function)的更多相关文章
- Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...
- Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!
原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...
- 吴恩达机器学习笔记 - cost function and gradient descent
一.简介 cost fuction是用来判断机器预算值和实际值得误差,一般来说训练机器学习的目的就是希望将这个cost function减到最小.本文会介绍如何找到这个最小值. 二.线性回归的cost ...
- logistic回归具体解释(二):损失函数(cost function)具体解释
有监督学习 机器学习分为有监督学习,无监督学习,半监督学习.强化学习.对于逻辑回归来说,就是一种典型的有监督学习. 既然是有监督学习,训练集自然能够用例如以下方式表述: {(x1,y1),(x2,y2 ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
- 逻辑回归原理_挑战者飞船事故和乳腺癌案例_Python和R_信用评分卡(AAA推荐)
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...
- 机器学习(九)—逻辑回归与SVM区别
逻辑回归详细推导:http://lib.csdn.net/article/machinelearning/35119 面试常见问题:https://www.cnblogs.com/ModifyRong ...
- 线性模型之逻辑回归(LR)(原理、公式推导、模型对比、常见面试点)
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3) ...
- sklearn逻辑回归(Logistic Regression,LR)调参指南
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_ca ...
随机推荐
- linux C语言getopt()函数的使用
getopt被用来解析命令行选项参数. #include <unistd.h> 函数及参数介绍 extern char *optarg; //选项的参数指针,如果选项字符串里的字母后接着冒 ...
- Ducci Sequence
Description A Ducci sequence is a sequence of n-tuples of integers. Given an n-tuple of integers ( ...
- 几种解析xml方式的比较
1: DOM DOM 是用与平台和语言无关的方式表示 XML 文档的官方 W3C 标准.DOM 是以层次结构组织的节点或信息片断的集合.这个层次结构允许开发人员在树中寻找特定信息.分析该结构通常需要加 ...
- IOS播放音频 AVAudioPlayer(实例)
1. AVFoundation Build Phases => Link Binary With Libraies => + => AVFoundation.framework =& ...
- WebApi2 jsonp跨域问题
一:故事背景 以前在写WebApi2的时候,一直是用作前后端分离(WebApi2 +angularjs),可是最近自己在给WebApp写接口的时候遇到了很多坑,总结一下就是跨域问题.而跨域问题 ...
- 免费web直接打印的控件PAZU
PAZU 是4Fang 四方为配合"四方在线"软件于2004年开发的WEB打印控件,适用于各种WEB软件项目的打印.PAZU是客户端软件,使用于IE作为客户端的所有应用,与服务器端 ...
- iOS基本网络请求
常见的网络请求有同步GET, 同步POST, 异步GET, 异步POST. GET请求和POST请求的区别: 1. GET请求的接口会包含参数部分,参数会作为网址的一部分,服务器地址与参数之间通过 ? ...
- IIS (HTTP Error 500.21 - Internal Server Error)解决
今天在测试网站的时候,在浏览器中输入http://localhost/时,发生如下错误: HTTP Error 500.21 - Internal Server Error Handler " ...
- 基于局部敏感哈希的协同过滤算法之simHash算法
搜集了快一个月的资料,虽然不完全懂,但还是先慢慢写着吧,说不定就有思路了呢. 开源的最大好处是会让作者对脏乱臭的代码有羞耻感. 当一个做推荐系统的部门开始重视[数据清理,数据标柱,效果评测,数据统计, ...
- 分析jQuery中的each方法
在看jQuery源码是怎么实现each方法之前,我们看一下js的原生实现. ECMAScript 5为数组定义了一个forEach方法,该方法接受两个参数:第一个参数是要在每一个数组项上运行的函数,第 ...