【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题
1006: [HNOI2008]神奇的国度
Description
K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.所谓N边关 系,是指N个人 A1A2...An之间仅存在N对认识关系:(A1A2)(A2A3)...(AnA1),而没有其它认识关系.比如四边关系指ABCD四个人 AB,BC,CD,DA相互认识,而AC,BD不认识.全民比赛时,为了防止做弊,规定任意一对相互认识的人不得在一队,国王相知道,最少可以分多少支 队。
Input
第一行两个整数N,M。1<=N<=10000,1<=M<=1000000.表示有N个人,M对认识关系. 接下来M行每行输入一对朋友
Output
输出一个整数,最少可以分多少队
Sample Input
1 2
1 4
2 4
2 3
3 4
Sample Output
HINT
一种方案(1,3)(2)(4)
参考文献:弦图与区间图-陈丹琦
弦图的定义:任何一个长度大于3的环中,至少有一个弦;
使用MCS()求完美消除序列问题;
即先字典序广度优先搜索出之后涂色的点的顺序,(所谓的完美消除就是每次都消除一个三角形)。
lable[i]表示第i个点与多少个已标记的点相连;id[i]表示在第i个完美消除序列中的点是哪个;之后直接涂色即可
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
#include<map>
#include<queue>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define MSi(a) memset(a,0x3f,sizeof(a))
#define inf 0x3f3f3f3f
#define lson l, m, rt << 1
#define rson m+1, r, rt << 1|1
typedef pair<int,int> PII;
#define A first
#define B second
#define MK make_pair
//typedef __int64 ll;
template<typename T>
void read1(T &m)
{
T x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
if(a>) out(a/);
putchar(a%+'');
}
const int N = ;
const int M = ;
int tot,head[N];
struct Edge{
int to,Next;
}e[M<<];
void ins(int u,int v)
{
e[++tot].Next = head[u],e[tot].to = v,head[u] = tot;
}
priority_queue<PII> pq;
int lable[N],id[N],del[N];
void MCS(int n)
{
MS0(lable);
MS0(del);
pq.push(MK(,n));// 每次选未删除的lable最大的进行拓展;
while(!pq.empty()){
int u = pq.top().B;
pq.pop();
if(del[u]) continue;
del[u] = ;id[n--] = u;// 记录id才是目的,lable只是拓展的依据;
for(int t = head[u];t;t = e[t].Next){
int v = e[t].to;
if(del[v]) continue;
lable[v]++;
pq.push(MK(lable[v],v));
}
}
}
int color(int n)
{
int ans = ;
MS0(lable);
rep_1(i,n,){
int cnt = ,u = id[i];
for(int t = head[u];t;t = e[t].Next){
int v = e[t].to;
if(lable[v]) cnt++;
}
lable[u] = cnt;// 继续涂色;
ans = max(ans,lable[u]);
}
return ans;
}
int main()
{
int n,m,u,v;
read2(n,m);
rep0(i,,m){
read2(u,v);
ins(u,v);ins(v,u);
}
MCS(n);
out(color(n));
return ;
}
【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题的更多相关文章
- bzoj 1006: [HNOI2008]神奇的国度 弦图的染色问题&&弦图的完美消除序列
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1788 Solved: 775[Submit][Stat ...
- bzoj 1006: [HNOI2008]神奇的国度 -- 弦图(最大势算法)
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MB Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角 ...
- bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法
[HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4370 Solved: 2041[Submit][Status][D ...
- ●BZOJ 1006 [HNOI2008]神奇的国度(弦图最小染色数)○ZOJ 1015 Fishing Net
●赘述题目 给出一张弦图,求其最小染色数. ●题解 网上的唯一“文献”:<弦图与区间图>(cdq),可以学习学习.(有的看不懂) 摘录几个解决改题所需的知识点: ●子图和诱导子图(一定要弄 ...
- BZOJ 1006: [HNOI2008]神奇的国度(弦图)
传送门 解题思路 弦图就是图中任意一个大小\(>=4\)的环至少存在一条两个节点不相邻的边,这样的图称为弦图,弦图有许多优美的性质.一个无向图是弦图当且仅当它有一个完美消除序列,完美消除序列就是 ...
- BZOJ 1006 [HNOI2008] 神奇的国度(简单弦图的染色)
题目大意 K 国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即 AB 相互认识,BC 相互认识,CA 相互认识,是简洁高效的.为了巩固三角关系,K 国禁止四边关系,五边关系等 ...
- BZOJ 1006: [HNOI2008]神奇的国度( MCS )
弦图最小染色...先用MCS求出完美消除序列然后再暴力染色... ------------------------------------------------------------------- ...
- [BZOJ 1006] [HNOI2008] 神奇的国度 【弦图最小染色】
题目链接: BZOJ - 1006 题目分析 这道题是一个弦图最小染色数的裸的模型. 弦图的最小染色求法,先求出弦图的完美消除序列(MCS算法),再按照完美消除序列,从后向前倒着,给每个点染能染的最小 ...
- BZOJ 1006 [HNOI2008]神奇的国度==最大势算法
神奇的国度 K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在. ...
随机推荐
- 出栈入栈动画demo
项目做了一个切换界面动画的功能,用到了出栈入栈的,写了一个demo package com.myron.stackview; import java.util.Stack; import androi ...
- 八、套接字(Socket)
demo 一个连接由它的两个端点标识,这样的端点称为套接 套接字是支持TCP/IP协议的网络通信的基本操作单元. 可以将套接字看作不同主机间的进程进行双向通信的端点. 上图连接1的一对套接字为: (1 ...
- OpenCMS integration with Spring MVC--reference
ref from:http://blogs.indrajitpingale.com/?p=8 http://blog.shinetech.com/2013/04/09/integrating-spri ...
- Views
Views Views are the visual side of the Nova, they are the HTML output of the pages. Views can be loc ...
- Java基础知识强化之IO流笔记65:序列化流 和 反序列化流
1. 什么是 序列化 和 反序列化 ? 序列化 (Serialization):将对象的状态信息转换为可以存储或传输的形式的过程.比如转化为二进制.xml.json等的过程. 在序列化期间,对 ...
- Spring中BeanPostProcessor
Spring中BeanPostProcessor 前言: 本文旨在介绍Spring动态配置数据源的方式,即对一个DataSource的配置诸如jdbcUrl,user,password,driverC ...
- Matlab图像函数之pie
一.pie pie用于描绘平面饼图. (1)pie(X) 利用向量X中的数据描绘饼图. 例如: X = [1, 1, 2, 2, 3, 4, 5]; pie(X) 得到 注意,X中的数据被看做频数,饼 ...
- JavaScript - Base64 编码解码
以下代码摘自:http://cryptojs.altervista.org/encoding/Base64.html function base64_encode(str) { if (window. ...
- 用PHP操作http中Etag、lastModified和Expires标签
http://blog.hehehehehe.cn/a/10994.htm 客户端通过浏览器发出第一次请求某一个URL时,根据 HTTP 协议的规定,浏览器会向服务器传送报头(Http Request ...
- 自动生存Makefile教程 autoscan aclocal autoconf autoheader automake configure
LZ没学过makefile的写法,只知道使用tab.于是乎发现了autotools系列工具 基本流程是:autoscan.aclocal.autoconf.autoheader.automake.co ...